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Abstract  
(for dissemination) 
 
 

Deliverable 3.5 provides the Dem@Care solutions for early fusion 
and mining. This covers physiological and lifestyle sensor data 
fusion, as well as early event processing. 

Complex Event Processing (CEP) technology has been proposed as 
good candidate for merging and extracting information from sensors 
and various other sources. In this deliverable we will focus on 
enhancements of this technology especially towards semantic 
reasoning and on its benefits for clinicians and doctors. 

Additionally, this deliverable finalizes the WP3 sensor algorithm 
development: Monitoring of physical activity is realized via a 
wearable wrist device, DTI-2, and combined (fused) with ’Smart 
Things’ sensor data for achieving exercise detection. The algorithms 
are described, along with test results from @NursingHome trials. 

Furthermore, WP3 has applied wearable sensors and the developed 
algorithms in all trials - @Home, @NursingHome and @Lab. Based 
on the data collected, this document gives now a comprehensive 
analysis of the results.  
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Executive Summary 

 
This document provides the final results of Dem@Care WP3.  
Early fusion and mining covers physiological and lifestyle sensor data fusion, as well as 
Complex Event Processing. 
Complex Event Processing (CEP) technology has been proposed as good candidate for 
merging and extracting information from sensors and different other sources. In this 
deliverable we will focus on enhancements of this technology especially towards semantic 
reasoning and on its benefits for clinicians and doctors. 
Early fusion enables exercise detection, realized by monitoring of physical activity via a 
wearable wrist device, DTI-2, and combined (fused) with SmartThings sensor data.  
Various trials have been completed and comprehensively analysed in the context of WP3. 
Currently, the WP3 trials have been completed in all three settings, i.e., @Lab, 
@NursingHome, and @Home.  The developed algorithms on dual task assessment, stress 
detection, activity and exercise detection have been successfully tested, showing that they 
provide efficient and meaningful applications for dementia care in the respective context. 

The deliverable also presents a component integration and pilot usage section, which 
summarizes this entire Work Package contributions of research and development, to real-
world piloting and the clinical results in the context of Dem@Care. 
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1  Introduction 
This document provides the Dem@Care solutions for early fusion and mining. This covers 
physiological and lifestyle sensor data fusion, as well as early event processing. 
Chapter 2 addresses complex event processing. This extends D3.2 ([2]) incorporating scalable 
complex event processing methodologies and enriching knowledge discovery.  

Early fusion in Dem@Care allows the extraction of conclusions concerning the person’s state 
by mining the physiological and lifestyle data that can be used for the early detection of 
unusual events or patterns. Complex Event Processing (CEP) technology has been proposed 
as good candidate for merging and extracting information from sensors and different other 
sources. After having introduced Complex Event Processing, its concepts, its proposed 
implementation and its usage in the first deliverable D3.2, this chapter will focus on 
enhancements of this technology especially towards semantic reasoning and on its benefits for 
clinicians and doctors. 

Additionally, this deliverable finalizes the WP3 sensor algorithm development: monitoring of 
physical activity is realized via a wearable wrist device, DTI-2, and combined (fused) with 
’SmartThings’ sensor data for achieving exercise detection. Here, the DTI-2 provides the 
level of physical activity measured, which is combined with measures of object motion, 
proximity, and contact from the SmartThings sensors. The various sensor modalities are 
combined through a set of hidden Markov models, with each model representing a different 
exercise. Chapter 3 describes the required signal processing and algorithms for exercise 
detection. The concept of exercise detection is introduced in Section 3.2, along with the 
combination of sensors used to achieve this. Afterwards, the required signal processing steps 
for the individual sensor modalities are discussed, followed by an introduction of the hidden 
Markov models used to combine the various sensor modalities. Finally, conclusions on 
exercise detection are provided in Section 3.3. A study on exercise detection is discussed later 
in this document, in Section 4.4. 
Furthermore, Chapter 4 outlines the results of the various trials which have been completed 
and comprehensively analysed in the context of WP3. Currently, the WP3 trials have been 
completed in all three settings, i.e., @Lab, @NursingHome, and @Home.  

In the @Lab study, described in section 4.2, motor functioning under the dual-task paradigm 
has been explored for people with various stages of cognitive decline. The @Lab trial aimed 
at exploring the relation between cognitive impairment and gait parameters, measured by 
means of ambulatory actigraphy during single and dual task conditions, in order to obtain 
more insights into the utility of such a paradigm as an additional indicator for the diagnosis of 
MCI and early AD. 

Section 4.3 addresses the @NursingHome study, in which the efficacy of the stress level 
measurements provided by the DTI-2 skin conductance wristband is explored for nursing 
home residents with cognitive decline. Specifically, this study aims to determine if states of 
agitation or aggression result in increased levels of measured stress, compared to the levels of 
stress normally observed.  
The @Home study, which is covered by section 4.4, aimed at investigating exercise detection 
using data fusion of the DTI-2 wristband and SmartThings devices. In the study, the DTI-2 
device was used to measure activity levels, while SmartThings devices were used to provide 
event-based data. 
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Chapter 6 presents an overall summary of all the contributions of the entire WP3 as modules 
in the integrated Dem@Care system and applied, clinical piloting across the consortium.  
Finally, Chapter 6 concludes on the overall D3.5 results. 
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2  Complex event processing  

2.1  Introduction 
Early fusion in Dem@Care allows the extraction of conclusions concerning the person’s state 
by mining the physiological and lifestyle data that can be used for the early detection of 
unusual events or patterns. Complex Event Processing (CEP) technology has been proposed 
as good candidate for merging and extracting information from sensors and different other 
sources. 
After having introduced Complex Event Processing, its concepts, its proposed implementation 
and its usage in the first deliverable D3.2 ([2]), this chapter will focus on enhancements of 
this technology especially towards semantic reasoning and on its benefits for clinicians and 
doctors. 

2.2  Semantic CEP 

Towards Semantic CEP 

Information fusion is the process of combining information and knowledge from multiple 
sources representing the same real-world object in order to obtain a consistent, accurate, and 
useful representation of the situation. Fusion aims to achieve a more complete result than 
simply the sums of all the inputs.  

There is also a distinction between low level fusion which occurs close to sensors and other 
structured sources of information and high level fusion. Low level fusion deals usually with 
simple information, which is most of the time structured (i.e., coming from sensors): one of 
the difficulty and research area is the uncertainty and impreciseness of the information, in 
order to improve the quality of the results. At higher level, fusion can also deal with semantic 
information, as nowadays unstructured information is used in many areas, and provides a lot 
of useful information, which can be though difficult for a computer/system to manipulate and 
reason with.  

Event processing is a method of tracking and analysing streams of input information about 
things that occur (events), in order to derive a better understanding of the situation from them. 
In Dem@Care, CEP are used to combine data from multiple sources (sensors, detected 
activities) in order to infer events or patterns that represent the condition of the PwD, and 
allow the doctor to make better informed decisions, especially regarding the available amount 
of information: CEP can reduce the number of situations to deal with, and thus help the doctor 
or clinicians to determine which information is relevant and which case or situations they 
have to investigate further.  

The CEP is based on the definition of a set of rules which take a set of events as the input and 
produce a set of complex events at a higher level as output. 

Ambient Assistance Living (AAL) is a new area of research and applications, focusing on 
services that support people in their daily life with a particular focus on elderly people and 
patients. In this domain, CEP has been identified as a key technology to detect rapidly (real-
time) the situations where people need urgent help, using information provided by sensors, 
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information that can be diverse and numerous. Last research intends also to improve existing 
detection systems such as CEP with semantic knowledge [28]. 
Indeed Semantic CEP (or SCEP) combines approaches of Complex Event Processing such as 
events, complex events, patterns, etc. and semantic technologies, such as ontologies, 
definitions and behaviour rules. 

Benefits from using semantic CEP are: 

• event data becomes meaningful information / declarative knowledge while conforming 
to an underlying formal semantics (e.g., automated mediation between different 
heterogeneous domains and abstraction levels), 

• better understanding of situations (states) by machines (agents) 
• better understanding of the relationships between events (temporal, spatial, causal, .., 

relations between events, states, activities, processes) 
• declarative processing of events and reaction to situations (semantically grounded 

event-driven rules or reaction rules) 

Semantic processing of event information is thus leading to 

• new event subtypes, 
• new classifications, 
• updated / new set definitions, 
• updated / new production rules, 
• updated / new decisions. 

Implementation and use of Semantic CEP 
As a reminder, a complex event is as an event which can occur only if other observed events 
occur. It is the abstraction or the aggregation of events i.e. it is generated by the occurrence of 
several events. Adding semantic interpretation can occur at several levels, which we will 
describe in this chapter. To do so, detail and implementation of usual CEP architecture will be 
described, and parts where semantic knowledge can be used will be highlighted. 

For the implementation, the usual processing engine for CEP requires three items to work: a 
set of events, a set of rules and a rule engine. 

The set of events are stored in a database of facts (as events are not yet processed by the 
engine, they can be considered as facts). To the arrival of an event in the system, the latter is 
added to the base of facts. This base must thus be able to contain a huge amount of events and 
to be updated regularly. The database of facts is also called Working Memory or Event 
History. 
The set of rules, just like the events, are stored in a database of rules, also called Knowledge 
Base because rules represent the intelligence of the system. It is generally created with the 
initialisation of the system but the majority of implementations are able to modify the rules 
dynamically. Usually rules are represented with a query, to identify the expected events or 
pattern, also called trigger, and with an action part, which represents the actions to do when 
the rule is triggered (the rules express the links between the event model and the action 
model). 
The inference engine is the core of the system. Indeed, it is about the algorithm making the 
link between rules and facts. Various algorithms are available, that makes the specific 
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characteristic of the various implementations of CEP. The inference engine is connected with 
a diary which manages the order according to which are tested and carried out the rules in 
order to optimise the search of the validated rules.  

The next figure (Figure 2-1) illustrates a CEP architecture example, with the addition of a 
semantic layer. Indeed the red and grey parts represent the usual CEP architecture, and the 
blue part is the additional semantic capabilities. The CEP block highlights further details of 
the inference engine, which encompasses  

• the state engine, to deal with the events and their state model,  
• the rule engine, which triggers the rules from the rule base,  
• and the query engine, which continuously interrogate the event stream, based on the 

stored queries (part of the rules). 

 
Figure 2-1: Semantic CEP architecture example 

The addition of semantic knowledge can thus interacts with all of these subcomponents, by 
using a knowledge base, which can be seen as meta-patterns. At this level, events can be 
modified either to transform them into semantic knowledge, either to add semantic knowledge 
to them. 

Thus any database of the CEP engine can be enriched with semantic knowledge, the state 
model, to interpret (or infer) knowledge from the raw events, the rule base to be able to 
express rules with semantic knowledge, and the query base. 
In Dem@Care, several improvements have thus been identified that can be seen as different 
steps: 

1. Event enrichment to be able to define new types of events with semantic content, 
2. Query enrichment to be able to use semantic database and knowledge, 
3. Rule engine enrichment to adapt fully the rule engine, 
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4. Graphic User Interface and Natural Processing to allow the user to write easily queries 
and rules with no technical knowledge. 

Semantic Events 

The next figure (Figure 2-2) illustrates in a different representation how to add semantic 
knowledge to the events, by modifying them before they are consumed by the inference 
engine. 

 
Figure 2-2: Semantic Enrichment of an event stream 

The events can usually come from three sources: hardware, software or human. In hardware, 
an event is the result of a change of state of a process. The state is defined by the value of 
some parameters or some sensor, when a value exceeds a threshold there is a change of state. 
An example of such event is a motion detection sensor detecting a person entering the room 
that the PwD sits. In software, events correspond to messages send by components; for 
example, the detection of a face to face interaction from the relevant component. An event 
from a human can be information resulting from a human observation, such as the doctor or 
care taker noticing a change of state in PwD and informing the Dem@Care system.  

This last information can also be represented in a more human formalism, which in that case 
is semantic information and has to be transformed to be used by the engine. For example, a 
career could be interested in receiving alerts for any move of a PwD in his room or if he 
leaves his bed. In this case the career would just write a rule like “if PwD moves or leaves his 
bed”, which would be translated regarding the information the sensors can provide i.e. as the 
sensors provides different detailed positions or moves of a PwD, the system would extract 
(and understand) only the observations from the sensors which corresponds to the desired 
alert. 
To do so, two types of semantic information need to be captured – the semantic meaning of 
event attributes, and the semantics of the domain entities and concepts that relate to an event. 
Let’s consider the example of the movements of the PwD where the same concept of 
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“movement” has multiple structural variants depending on the information provided by 
sensors in the project. This is an example of capturing the semantic meaning of an event 
attribute. Other structural variants of the “movement” concept can be considered such as 
“changing position A to B” (GoPro Camera, with position detection algorithm), “tracking 
from location A to B” (GoPro Camera with tracking algorithm) and “bed exit” (sleeping 
sensors such as Beddit) as alternative representations. A traditional CEP system cannot apply 
a unified query over these event streams unless pattern designers are aware of the underlying 
structural heterogeneity of events and manually transform queries to suit each stream. This 
approach does not scale, not to mention that the data providers and CEP application users are 
decoupled. 
An ontology-based approach is proposed to capture semantics of event attributes. Domain 
event types that are captured include all kinds of observations coming from the sensors. One 
standard concept is used to represent a class of semantically equivalent attributes, and 
alternative concepts are modelled as its sub-class. For example, “evt:movement” is the 
standard concept of movement detection, while equivalent classes “evt:changeposition”, 
“evt:changelocation” and “evt:bedexit” are its sub-classes. Integration of data with 
heterogeneous schemas can be automated using this ontology model. 

The second aspect of semantics relates to domain entities in the knowledge-base that are 
related to events. For example, the source of a temperature measurement event may be 
influenced by different physical spaces (in the project, home, nursing home or hospital). The 
operator could be interested in a specific category of these spaces when defining queries. 
These domain concepts associated with events from a specific stream are less dynamic. 
However, these concepts are not necessarily present as an attribute in the event itself but 
rather part of the domain knowledge. It is important to link this knowledge-base with the 
events for intuitive and expressive query design. 

Query and Rule Definition 
The next step is to be able to use this semantic information, especially in the query process to 
define suitable rules. The semantic event model is used as the basis for defining a Semantic 
CEP (SCEP) query model. Furthermore, this query model is used uniformly for both 
continuous (streamed) events coming from sensors and user generated (information added by 
carers or doctors) or processed (by the CEP engine) events. The model starts with a traditional 
CEP query model and incorporates semantic constraints that are based on semantic query 
languages. The structure of a Semantic CEP query is thus: 

SCEP Query ::= 
 [PREFIX <namespace>] 
 [CEP subpattern] 
 [semantic subpattern] 
 [data window] 
The CEP subpattern specifies the temporal and relational constraints of events based on their 
attributes. The semantic subpattern places semantic constraints over events and their 
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associated domain entities. W3C Semantic Web query language SPARQL1 has been 
considered to represent semantic subpatterns as triples. Data window (DW) is the time range 
upon which users wish to apply the query. DW is different from the CEP query window 
(QW). If the DW overlaps with a time in the past, the query should be executed over both 
historical and real-time events. On the other hand, a CEP QW specifies the time/length range 
for component events which constitute a pattern. 
Query usually indicates the target input stream, output definitions, event variable declarations, 
and temporal and content-based constraints. The CEP query model is thus: 

CEP Subpattern ::= 
 SELECT <event*, attribute*, aggregation*> 
 FROM <event, input stream>* 
 (WHERE <relational constraints>)? 
 (SEQ <event, event, ...>)? 
 (WINDOW <window specifications>)? 
Hereafter are some examples of queries to illustrate the difference between usual CEP queries 
and new Semantic CEP queries. It also shows that the transformation of existing CEP rules 
into semantic rules is simple. 

Simple CEP query: 
This pattern detects a temperature event with the skin temperature measuring more than 25°C 
with no temporal and window specified. 

SELECT ?e.sensorID, ?e.skintemperature 
FROM ?e aStream 
WHERE ?e.skintemperature > 25 

Simple Semantic CEP query:  
This pattern includes a semantic constraint to detect events from a “home”. The CEP 
subpattern is identical previous one. 

PREFIX bd:< http://weblab-project.org/building.owl#> 
PREFIX evt:< http://weblab-project.org/DBEvent.owl#> 
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
 SELECT ?e.sensorID, ?e.skintemperature 
 FROM ?e aStream 
 WHERE ?e.skintemperature > 37 

                                                
1 http:/www.w3.org/TR/rdf-sparql-query. 
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 {?e evt:hasEventSource ?src} . 
 {?src bd:hasLocation ?loc} . 
 {?loc rdf:type bd:Home} . 

Sequence CEP query: 
This pattern detects a sequence of two temperature events in a 15 seconds sliding time 
window, with the temperature of the second event greater than that of the first event by 0.1°C. 

SELECT ?e1.skintemperature, ?e2.skintemperature 
FROM ?e1 aStream, ?e2 aStream 
WHERE ?e2.skintemperature - ?e1.skintemperature > 0.1 
WINDOW(time, 15sec, sliding) 

Sequence Semantic CEP query: 
This pattern includes semantic constraints to detect events from a “home”. 

The CEP subpattern is identical to previous one. Ignoring the namespace definitions to be 
brief, the rule is 

SELECT ?e1.skintemperature, ?e2.skintemperature 
FROM ?e1 aStream, ?e2 aStream 
WHERE ?e2.skintemperature - ?e1.skintemperature > 0.1 
WINDOW(time, 15sec, sliding) 
{?e1 evt:hasEventSource ?src} . 
{?e2 evt:hasEventSource ?src} . 
{?src bd:hasLocation ?loc} . 
{?loc rdf:type bd:Home} . 

Aggregation CEP query:  
This pattern computes the average temperature of skin in a 15 minutes batch time window, for 
temperatures greater than 25°C. 

SELECT AVG(?e.skintemperature) 
FROM ?e aStream 
WHERE ?e.skintemperature > 25 
WINDOW(time, 15min, batch) 

Aggregation Semantic CEP query: 
This pattern includes semantic constraints to detect events from a “home”. The CEP 
subpattern is identical to previous one. 
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SELECT AVG(?e.skintemperature) 
FROM ?e aStream 
WHERE ?e.skintemperature > 25 
WINDOW(time, 15min, batch) 
{?e evt:hasEventSource ?src} . 
{?src bd:hasLocation ?loc} . 
{?loc rdf:type bd:Home} . 
As previously mentioned, when users design SCEP queries, they do not need to know details 
of the underlying data such as their schema and thus rule definition is simpler. Queries are 
defined at a high level abstraction using domain ontology models, and the semantic mismatch 
between the incoming event and semantic query is addressed by the CEP engine. 

2.3  Conclusion 
This chapter highlighted the benefits of adding semantic knowledge to powerful rule-based 
technology such as CEP, which allows to process huge amount of data, with simple rule 
definition and also to infer new high level information. Semantic knowledge is now available 
in numerous domains, and is more natural for human users. On one hand this addition can add 
useful knowledge to the events and their interpretation, and on the other hand it allows simple 
rule definition, which can also be improved by providing to the users a dedicated user 
interface. It prevents the users from needing technical knowledge and allows them to write 
and manage their proper rules for analysis and situation awareness. 

In practice, CEP has been tested with synthetic and offline DTI-2 data and is in position to 
seamlessly and effortlessly perform early fusion by searching and aggregating a streamline of 
data using semantic criteria. However, in Dem@Care the real-time data streams in need for 
CEP are much more limited. Real-time and diverse sensors were integrated only in the final 
year, following the very recent technological developments (D7.8). CEP provides the 
infrastructure for much richer early fusion, after clearly defining usage scenarios and 
integrating the component with suitable domain models and rules. 
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3  Physiological and Lifestyle monitoring  

3.1  Introduction 
In this chapter, we describe the work on the wearable sensor DTI-2, and the ambient sensors 
comprising the SmartThings platform. In particular, this chapter addresses the requirement of 
exercise detection; the recognition of certain pre-defined activities that may be prescribed as 
exercises for people with dementia (PwD). Multi-sensor exercise detection can be seen as a 
particular case of multi-sensor activity recognition, a popular topic of research over the past 
years (for example, see [20], [21], [22]). 

The work on exercise detection includes the early fusion of a number of sensor modalities 
obtained from the DTI-2 and the various SmartThings sensors used. The measured modalities 
include the activity level, acceleration, contact, and network signal strength to indicate 
proximity. The measurements are parsed or converted to data sequences, and the individual 
data sequences for each sensor and sensor modality are then merged into a single data 
sequence describing the individual exercises to be detected. 

To perform data fusion on the different sensor modalities, a number of hidden Markov models 
are created, with each exercise to be detected represented by a single model. Hidden Markov 
models have previously been investigated for sensor fusion and the detection of human 
activities (e.g., [23], [24], [25]). The parameters of these models are then estimated using a set 
of example data sequences for each of the exercises. A newly encountered exercise sequence 
can then be classified as one of the trained exercises by examining the likelihoods of the 
exercise sequence matching any of the previously trained exercise models. 
In the remained of this chapter, the concept of exercise detection is further introduced in 
Section 3.2, along with the sensors used for exercise detection. Afterwards, the required 
signal processing steps for the individual sensor modalities prior to data fusion are discussed, 
and afterwards, the hidden Markov models used for data fusion are introduced. Finally, 
conclusions on exercise detection are provided in Section 3.3. A study on exercise detection is 
discussed later in this document, in Section 4.4. 

3.2  Exercise detection 
One of the requirements defined in WP2 refers to exercise detection. In this context, exercise 
is defined as any physical activity consciously undertaken as part of a prescribed exercise 
program or intervention. As a result, exercise detection refers to the identification of specific, 
predetermined activities, rather than, for example, determining the total amount of exercise 
during the day. The aim of exercise detection is to determine if and when prescribed exercises 
are being performed by the PwD. 
While the list of possible exercises is potentially very long, a selection is made here based on 
the scenarios developed in WP2, where potential exercises are listed as: taking a walk, sit-to-
stand exercises, lifting weights, climbing the stairs, and riding a bicycle. As a stationary 
bicycle was unavailable for user studies, the ‘riding a bicycle’ exercise is not included here, 
leaving a total of four exercises for the purposes of exercise detection. 

Using a single sensor modality to detect high-level activities such as the above-mentioned 
exercises is often very challenging. An alternative is to combine the measurements of multiple 
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sensors and / or multiple modalities, a process often referred to as sensor fusion. The 
advantage of this approach is that the multiple inputs offer a more complete overview of the 
situation compared to any single sensor modality. On the other hand, the challenge is to 
combine the often very different types of inputs in a meaningful way, hopefully resulting in 
improved detection accuracy. 

 
Figure 3-1: Images of the sensor types used for exercise detection. From left to right: 
SmartSense multi-sensor, Aeon labs door contact sensor, and DTI-2 wristband. 

To accurately detect the different exercises, the accelerometer measurements from the DTI-2 
wristband are combined with a number of wireless SmartThings sensors placed in the 
environment. In particular, sensors are placed on or near the door, chair, training weights, and 
the stairs in an apartment. Amongst other things, these sensors measure acceleration, contact, 
and proximity to the user. Images of the sensor types used for exercise detection are shown in 
Figure 3-1. 

Signal processing 

Starting from the raw sensor measurements, a number of processing steps are completed for 
each sensor individually, with the aim of obtaining a comparable data format between the 
different sensor modalities. Additionally, at this stage the sensor modalities to be used for data 
fusion are selected. For the DTI-2 wristband, the available modalities (discussed in [2], [3] 
and [4]) include the activity level, energy expenditure, and stress measurements. As energy 
expenditure and stress are intended as low-resolution measurements (60 seconds or more), the 
activity level measurements are used instead, at a resolution of one second. The calculation of 
the activity level and accompanying activity counts in described in [2]. 

After calculation of the number of activity counts, a further processing step is used to segment 
the activity count values into discrete values of ‘none’ (i.e., very little measured activity), 
‘low’, ‘medium’, and ‘high’. The aim of this step is to obtain a data format more similar to 
that of the SmartThings sensors, which mostly produce binary outputs – having a similar data 
format between the different sensor modalities is beneficial for the data fusion algorithm. The 
distinction between the discrete activity count values was made using a set of manually-
determined thresholds. 
The SmartThings product range provides a platform for devices to communicate using the 
Zigbee or Z-Wave protocols. The platform allows for the interconnection of a number of 
different devices, which communicate through a hub device using an open API. Data is 
recorded as events occur, rather than at specific intervals, i.e., it is event driven, not clock-
driven. The sensors communicate with the hub wirelessly using the Zigbee / Z-wave 
protocols. Data is collected by the hub and saved to the Cloud. The SmartThings sensors are 
described in more detail in [4].  
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The range of SmartThings devices includes multi-sensors and door / window sensors. The 
SmartSense multi-sensors combine a motion sensor with an accelerometer, gyroscope and 
temperature sensor. Thus they can measure motion, vibration and orientation, acceleration and 
ambient temperature. These sensors can be attached in fixed locations, but they may also be 
attached to objects. When attached to objects, the acceleration and orientation information can 
be used to tell when the object is in use. The door sensor is a simple contact sensor that 
generates an event when its state changes (i.e., when it goes from open to closed, or vice 
versa).  This information is sent to the SmartThings Hub.   
The SmartThings sensors can be used as simple contact sensors (door open/closed), but can 
also be used to detect if any object is moving, or has been turned around. Additionally, it can 
be used as an ambient sensor to detect motion in the area, and the ambient temperature. These 
could be attached to objects to detect when they are being used (e.g. kettle, TV remote 
control), or they can be used as motion or door / window sensors. 

For the purposes of exercise detection, a single door sensor is used, which reports when 
changes in state occur (contact – no contact). Three multi-sensors, attached to the weights, 
chair, and mounted near the stairs, respectively, additionally report acceleration (active – not 
active), tri-axial accelerometer measurements, and various proximity-based metrics (LQI and 
RSSI, indicators of network strength and quality).  

Sensor modality Values 

DTI-2 activity level none, low, medium, high 

Door – contact contact, no contact 

Chair – contact contact, no contact 

Chair – acceleration active, not active 

Weights – acceleration active, not active 

Stairs – proximity close proximity, no proximity 

Table 3-1: Sensor modalities selected for data fusion. 

Using all of these modalities would likely result in redundancy of information, and introduce 
noise into the data fusion algorithm. Therefore, a number of modalities were selected which 
were likely to contain useful information with regard to the application of exercise detection. 
The selected modalities are show in Table 3-1. To determine proximity, the LQI and RSSI 
measurements were examined, and depending on certain threshold conditions, the proximity 
was determined as either close proximity, or no proximity. 
An example of a number of the selected sensor modalities for a participant during the exercise 
detection study discussed in Section 4.4 is shown in Figure 3-2. Here, the coloured lines 
indicate the various sensor modalities being enabled (i.e., having the value ‘contact’, ‘active’, 
or ‘close proximity’, as appropriate). The blue lines indicate the activity level measured by the 
DTI-2, scaled from 0 (‘none’) to 1 (‘high’). The background colours indicate the exercise 
being performed. In the figure, it can be seen that certain sensor modalities are associated 
with certain exercises, as would be expected. 
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Figure 3-2: Example of the processed sensor outputs for a participant performing 
several activities, indicated by the various background colours; activities include sit-
to-stand (purple), lifting weights (green), walking (yellow), and climbing stairs (blue). 
Sensor modalities include the overall and discrete activity level (blue), chair contact 
sensor (red), weights movement sensor (green), door contact sensor (black), and the 
stairs proximity sensor (light blue). The dashed, vertical black lines represent 
annotation points in the data (e.g., transitions between activities). 

After this initial processing on the raw sensor data, the various sensor modalities need to be 
combined into a single sequence of sensors events to be useable in the data fusion algorithm 
described below. This is done using the following method: a sliding window moves beginning 
from the annotated start time of an activity to the end time of that activity, over all sensor 
modalities simultaneously. Whenever an event change is encountered in any of the sensor 
modalities, the new event is added to the combined sequence. Whenever an event remains 
unchanged for over five seconds, it is added to the combined sequence again, after which it 
may be added again five seconds later, and so on. This latter rule ensures that events 
continuing for a longer time are adequately represented in the combined sequence. 

To reduce redundancy in the combined sequence, the ‘zero’ state for each binary sensor 
modality was not included in the final combined sequence. That is, sensor events were only 
included when the sensor was e.g. ‘on’ or ‘active’. This avoids repeated measurements 
associated with a sensor state which represents that nothing is actually happening. 

Algorithm for data fusion 
In order to combine the measurements of the various sensors, a number of so-called hidden 
Markov models (HMM) are created. These models are capable of performing data fusion by 
accepting sequences of time-ordered, discrete observations, which may be generated by 
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multiple sensor modalities and combined into single stochastic model. Once a HMM is 
trained on sequences related to a certain exercise, it can provide a probability that a newly 
performed activity constitutes the same exercise that the model was trained for. 

Conceptually, a HMM consists of a number of observable states, and a number of hidden 
states. At each point in time, the model resides in one of the hidden states. While in this 
hidden state, the model also displays one of the observable states – which observable state is 
visible is determined probabilistically based on the current hidden state. The observable state 
is often referred to as an emission or observation, and these correspond to the observations in 
the exercise sequences. When moving to the next time point, the model changes its hidden 
state, possibly to the same state it currently resides in (i.e., it remains in the same state). The 
next hidden state is determined probabilistically, depending only on the current hidden state 
(this is referred to as the Markov property). 
Mathematically, HMMs can be defined through two probability matrices; the transition 
probability matrix }{ ijaA = , containing the probabilities of moving from one hidden state to 
the next, and the emission probability matrix )}({ kbB j= , containing the probabilities of 
generating a certain observation given a particular hidden state. The contents of these matrices 
are given as 

( )itjtij UqUqPa === + |1  

( )jtkj UqVPkb == |)(  

Where tq is the hidden state at time t, and where U and V denote the set of hidden states and 
the set of visible states, respectively. For a more detailed introduction to hidden Markov 
models, see for example [26]. 
For a given model and a sequence of observations, the probability that the given sequence 
‘matches’ the given model (i.e., that the sequence was created by the model) can be 
determined using the well-known ‘forward-backward’ procedure. This method is based on 
dynamic programming, and examines all possible hidden state paths through the model to find 
the most likely set of transition and emission probabilities. The resulting likelihood score 
indicates whether the model and the sequence are a good match (high likelihood) or a poor 
match (low likelihood). 

Generally, the transition probability and emission probability matrices A and B are created 
manually, but are instead estimated given a number of example sequences representative for 
the envisioned model. The most common method for parameter estimating is the Baum-
Welch (BW) algorithm, which can be interpreted as an expectation-maximization algorithm. 
A full discussion of the BW algorithm is out of scope here, but is explained in detail in [26]. 
One of the disadvantages of the BW algorithm is that models are only trained on ‘positive’ 
example sequences, that is, sequences which match the intended model. For problems where 
the aim is to distinguish between different classes, it can be beneficial to additionally consider 
negative examples (that is, sequences that match other models). This is particularly the case 
where sequences from different classes often share common properties, for example, where 
multiple exercises are associated with high amounts of physical activity. 
Therefore, the ‘MA’ algorithm for parameter estimation is used here, described in [27]. The 
MA algorithm accepts both positive and negative sequences for parameter estimation, and 
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aims to minimize a distance metric between the calculated likelihood score of each sequence 
matching the trained model, and a target likelihood score set for each sequence. Naturally, 
positive sequences are assigned high target likelihood scores, while negative sequences are 
assigned low likelihood scores. 
For the purpose of exercise detection, a single HMM is created for each exercise to be 
detected. To determine which exercise is being observed, the likelihood for each exercise 
model can be determined through the forward-backward procedure, and the exercise model 
with the highest likelihood can be selected as representing the current exercise. 

3.3  Conclusions 
In summary, this chapter describes a new algorithm for exercise detection, based on the data 
fusion of the DTI-2 and SmartThings sensor modalities. The exercise detection algorithm can 
be used to distinguish between the four trained exercises; sit-to-stand, lifting weights, walking 
and climbing stairs. The detection of these exercises can provide valuable feedback to 
clinicians regarding the health and adherence to prescribed exercise of the user. 
Unfortunately, exercise detection can currently only be performed in an offline fashion, as 
neither the SmartThings sensors nor the exercise detection module itself in integrated into the 
overall Dem@Care system. Even so, the algorithm described here can provide a basis for 
future development of exercise detection systems for PwD. 
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4  Trial data analysis 

4.1  Introduction 
This chapter outlines the results of the various trials which have been completed and analysed 
in the context of WP3. Currently, the WP3 trails have been completed in all three settings, 
i.e., @Lab, @NursingHome, and @Home. In the @Lab study, motor functioning under the 
dual-task paradigm has been explored with for people with various stages of cognitive 
decline. The @NursingHome study explores the efficacy of the stress level measurements 
provided by the DTI-2 skin conductance wristband for nursing home residents with cognitive 
decline. As part of the @Home study, exercise detection is investigated using data fusion of 
the DTI-2 and SmartThings sensors. The individual trials for each setting will be briefly 
introduced below. 
Based on previous research, the @Lab study described in Section 4.2 aims at exploring the 
relation between cognitive functioning and motor functioning in more detail. Motor 
functioning involves the integration of various cognitive functions including visuospatial 
perception, attention, and planning. Deficits in these cognitive functions may therefore affect 
motor functioning. Motor dysfunction, including gait disorders, could predict cognitive 
decline [9], which suggests that a "motor signature" can be detected in pre-dementia states 
such as Mild Cognitive Impairment (MCI). Based on studies that have shown that MCI and 
AD patients walk more slowly than healthy elderly and have an increased fall risk ([9] [10] 
[11] [12] [13] [14]), it has been proposed that gait analysis, particularly while performing a 
dual task, may represent a new track for the assessment of MCI and early-stage dementia 
[15]. The dual task paradigm can be used to study the allocation of attentional resources 
during a motor task. Dual tasking relies on dividing attention between two distinct tasks, often 
a motor task such as walking and a cognitively demanding task such as reciting words or 
calculations. Performing a dual task can reveal latent gait disturbances which are only evident 
under cognitive stress. 

As part of the @NursingHome study described in Section 4.3, the efficacy of the DTI-2 stress 
measurements is investigated using the longitudinal data recorded for three participants with 
dementia in the nursing home setting. The longitudinal data recorded by the DTI-2 is 
accompanied by annotations of the nursing home staff listing moments of agitation, 
aggression, and sleep. The study investigates if there is a relation between moments of 
agitation or aggression, and increased levels of stress measured by the DTI-2. It is 
hypothesized that compared to randomly selected measurements for the same participant 
(during wake), the DTI-2 reports on average higher levels of stress during moments of 
agitation or aggression. 
In the @Home study discussed in Section 4.4, exercise detection is explored through data 
fusion of the DTI-2 and SmartThings sensors, using the exercise detection algorithm detailed 
in Chapter 2. The accurate detection of certain exercises, which include sit-to-stand, lifting 
weights, walking and climbing stairs, can provide valuable feedback for clinicians regarding 
the health or adherence of a user. As part of the study, five participants performed the four 
exercises while wearing the DTI-2 sensor and with SmartThings sensors placed on objects 
and in the environment. The aim of the study is to investigate the accuracy of the exercise 
detection algorithm with regard to detecting and distinguishing between the four exercises. 
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4.2  @Lab trial 

Background  

The study aimed at exploring the relation between cognitive impairment and gait parameters, 
measured by means of ambulatory actigraphy during a single and dual task, in order to obtain 
more insights into the utility of such a paradigm as an additional indicator for the diagnosis of 
MCI and early AD. 

Methods  
The study took place at the Nice Memory Research Center located at the Geriatric department 
of the University Hospital and included 24 individuals diagnosed with MCI, 23 individuals 
diagnosed with AD and 22 healthy controls (HC). For the AD group, the diagnosis was 
determined using the proposed diagnostic criteria from Dubois et al. [16] requiring the 
presence of a progressive episodic memory impairment and biomarker evidence.	
  For the MCI 
group, patients were diagnosed using the Petersen clinical criteria [17]. In addition, subjects 
were required to have a mini-mental state examination (MMSE) [18] score higher than 24.	
  
Subjects were not included if they had a history of head trauma with loss of consciousness, 
psychotic or aberrant motor activity (tremor, rigidity, Parkinsonism) as defined by the 
Movement Disorder Society Unified Parkinson Disease Rating Scale [19] in order to control 
for any possible motor disorders influencing the ability to carry out the single and dual task. 

All participants performed a single walking task (ST) that consisted of walking 10 meters, 
turning around and walking 10 meters back. Subsequently, all participants performed a dual 
task (DT) that involved walking the same distance while counting backwards from 305 in 
steps of 1. During both tasks, participants wore the DTI-2 on their wrist from which objective 
measures for walking speed, cadence (i.e. number of steps per minute) and step variance (i.e. 
variance in time between two consecutive steps) were derived. After extracting the actigraphy 
data, each recording was linked to the participants through a participant ID, and the 
actigraphy data for the individual ST and DT was extracted using the event markers recorded 
by the device. The actigraphy data for the tasks was then further cleaned by removing any 
initial and trailing periods of inactivity, caused by e.g. the delay between the creation of the 
event marker and the commencement of the actual task. Gait features were then determined 
algorithmically, using a heuristics-based step detection algorithm. The algorithm involves 
cleaning the accelerometer signal with a bandpass filter, finding a number of peaks in the 
filtered signal as potential steps, and creating a selection of the detected peaks which 
optimizes a set of heuristic rules regarding the peak amplitude and distance to other peaks. 
From the detected steps, cadence was derived as the number of steps per minute, and step 
variance as the variance of the time between successive steps. Walking speed was derived as 
the distance travelled, divided by the time between the first and last step. 

Results   
The study included a total of 69 participants of which 23 individuals were diagnosed with AD 
(mean age=77 years (SD=9 years), MMSE=16.7 (SD=4.3)), 24 individuals were diagnosed 
with MCI (mean age=75 years (SD=9 years), MMSE=24.8 (SD=3.1)) and 22 were healthy 
controls (mean age=73 years (SD=7 years), MMSE=28.3 (SD=1.4)). Demographic 
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information and MMSE scores for the three groups are presented in Table 4-1.  
 

 Gender 
(male/female) 

Age MMSE 

HC 5/15 73 (SD=7) 28.35 (SD=1.5) 

MCI 8/16 75 (SD=9) 24.75 (SD=3.18) 

AD 12/11 77 (SD=9) 17 (SD=4.62) 

Table 4-1: Demographic information and MMSE for three groups. 

There was no significant difference between the three groups in gender (X²(2,67)=3.63, 
p=.163) or age (F(2,66)=1.63, p=.204). Information about the MMSE was available for 67 
participants. As expected, individuals diagnosed with AD had a lower MMSE (N=23, 
mean=17 (SD=4.62)) than individuals diagnosed with MCI and healthy controls, and 
individuals diagnosed with MCI (N=24, mean=24.75 (SD=3.18)) had a lower MMSE than 
healthy controls (N=20, mean=28.35 (SD=1.5)). All differences were statistically significant 
(F(2,66)=63.23, p=.000). 
Information about walking speed, cadence and step variance is presented in Table 4-2. All 
participants were slower during the DT than during the ST (see Figure 4-1). Interestingly, 
there seems to be a steeper increase in walking speed from healthy to MCI than from MCI to 
AD for both the ST and the DT. A mixed between-within ANOVA found a significant main 
effect for walking speed (Wilks Lambda = .76, F(1,66)=20.89, p=.000, partial eta squared = 
.24) with all groups showing a difference in walking speed between the ST and the DT. The 
difference between groups was significant (F(1,66)=4.24, p=.019, partial eta squared = .114). 
Post-hoc tests revealed that the difference in walking speed between the ST and DT differed 
between the HC (22.62 (SD=3.03) vs. 26.46 (SD=6.42)) and the AD group (26.34 (SD=5.74) 
vs. 31.91 (SD=7.79), p=.026) with the increase in walking speed from the ST to the DT being 
greater for the AD patients. Although walking speed was slower in patients with cognitive 
impairment than in healthy elderly, the difference failed to reach statistical significance for 
both the ST (F(2,68)=2.66, p=.077) and the DT (F(2,68)=2.78, p=.069). 
 Walking 

speed ST 

(in sec) 

Walking 
speed DT 

(in sec) 

Cadence ST Cadence DT Step variance 
ST 

Step variance 
DT 

HC 22.62 
(SD=3.03) 

26.46 
(SD=6.4) 

101.57 
(SD=12.69) 

95.98 
(SD=14.03) 

.045 
(SD=.049) 

.039 
(SD=.054) 

MCI 25.88 
(SD=7.7) 

30.95 (SD=10) 99.95 
(SD=8.99) 

87.28 
(SD=14.18) 

.057 
(SD=.045) 

.068 
(SD=.053) 

AD 26.34 
(SD=5.75) 

31.91 
(SD=7.79) 

97.29 
(SD=11.6) 

84.84 
(SD=13.44) 

.067 
(SD=.071) 

.102 
(SD=.099) 

Table 4-2: Walking speed, cadence and step variance for three groups. 
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Figure 4-1: Walking speed during the ST (1) and the DT (2). 

All participants had a lower cadence during the DT than the ST (see Figure 4-2). The 
difference in cadence between the ST and the DT is more pronounced for the MCI and AD 
patients than for the HC. A mixed between-within ANOVA found a significant main effect 
for cadence (Wilks Lambda = .57, F(1,66)=50.28, p=.000, partial eta squared = .432) with all 
groups showing a difference in cadence between the ST and the DT. The difference between 
groups was not significant (F(1,66)=2.89, p=.062, partial eta squared = .081). A one-way 
ANOVA found a significant difference in cadence for the DT (F(2,68)=3.98, p=.023) but not 
the ST (F(2,68)=.924, p=.402). Post-hoc tests revealed a difference in DT cadence between 
the HC and the AD (p=.027). 
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Figure 4-2: Cadence during the ST (1) and the DT (2). 

HC seem to have a smaller step variance and difference in step variance between ST and DT 
than MCI and AD patients (see Figure 4-3). A mixed between-within ANOVA did however 
not find a significant main effect for step variance (Wilks Lambda = .96, F(1,66)=2.62, p=.11, 
partial eta squared = .038). There was also no significant difference between groups with 
regard to the difference between ST and DT (F(1,66)=1.91, p=.156, partial eta squared = 
.055). A one-way ANOVA did not find a significant difference in step variance for either the 
ST (F(2,68)=.929, p=.4) or the DT (F(2,68)=1.8, p=.173). 
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Figure 4-3: Step variance during the ST (1) and the DT (2). 

Discussion  
The findings of this study show that there are subtle changes in gait parameters that may help 
distinguish healthy elderly from elderly with cognitive impairment, in particular walking 
speed and cadence. The findings furthermore add to the growing body of research on the 
interaction between cognitive function and motor performance. Possibly due to the small 
number of participants significant differences between healthy elderly and MCI patients could 
not be found. Based on the findings more research on motor function in healthy and 
cognitively impaired elderly seems valuable. In addition, more research is necessary in order 
to be able to develop protocols for objective measurements of gait parameters to detect subtle 
attentional deficits that may support the early diagnosis of MCI and AD.  

When considering the analysis of motor performance in the @Lab setting specifically (that is, 
in a controlled environment), the currently selected walking distances and cognitive task to be 
performed under the DT condition seem sufficient to observe differences between healthy 
participants and participants with cognitive decline. A further increase in walking distance 
may result in further improved detection of gait features, but this is difficult to determine 
without further research. For most participants, the cognitive task seems sufficiently difficult, 
although this is also difficult to determine, as the participants’ performance on the task was 
not recorded – for further study, it may be valuable to include this as an additional metric. 

For the @Lab setting, detection of gait features can be improved in a number of ways. First, 
additional sensors can be included to improve gait feature analysis, such as camera or motion 
tracking system, or gait mats (floor mats which include sensor for gait analysis such as 
pressure sensors). Second, a pendant-based device or device placed at the torso or hips can 
likely detect gait features more accurately compared to the DTI-2, due to the relative 
difficulty of measuring gait at the wrist. Since the skin conductance and stress measurements 
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of the DTI-2 are currently not used in the @Lab setting, the DTI-2 could be replaced with 
other devices for further trials. 
However, the above options become more difficult to implement outside of a controlled 
environment. For detecting cognitive decline in a daily life setting, placement of additional 
sensors such as cameras is more difficult. In addition, wrist worn devices are often better 
accepted compared to, for example, pendants or ankle bracelets, and as such the detection of 
gait features at the wrist may be required outside of a controlled environment. 
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4.3  @NursingHome trial 

Background  

As part of the @NursingHome trial, one of the aims is the evaluation of the efficacy of the 
stress level measurements provided by the DTI-2. Specifically, this study aims to determine if 
states of agitation or aggression result in increased levels of measured stress, compared to the 
levels of stress normally observed.  

Methods  
The data collection for this study was performed in the @NursingHome setting at LTU. For 
the duration of the study, participants wore a DTI-2 wristband during the day (the DTI-2 was 
recharged during the night). In addition, the nursing staff maintained a diary of the 
participants’ behaviour with regard to observed agitation, aggression, and sleep. The 
annotations provided in these diaries provide the ground truth for the emotional states of the 
participants in this study; that is, the diaries list when the participant is likely to be in an 
emotional state of stress. An example of such an annotation diary is shown in Figure 4-4. 

 
Figure 4-4: Example of an annotation diary for a single week of observations. Areas 
marked blue indicate periods of sleep, areas marked red or pink indicate agitation, and 
areas marked green indicate aggression. 

As part of this study, a total of 3 participants were observed for a period of 35, 64, and 92 
days, respectively. All 3 participants suffered from moderate to severe cognitive impairment, 
and were selected by the nursing staff based on a previous history of agitation and / or 
aggression.  

For the duration of the study, skin conductance measurements of the participants were 
recorded using the DTI-2 wristband, along with a number of other measurements such as 
acceleration and skin temperature. The skin conductance measurements are used to derive 
stress estimates, or levels of arousal as detailed in [4]; high arousal is often associated with 
short-term stress, although it can be affected by a number of other physiological processes 
and environmental conditions as well. As such, arousal has been investigated in a number of 
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studies to detect agitation or aggression ([5]), in a number of populations such as children 
with autism ([6]) and PwD ([7], [8]). 
As detailed in [4], the stress level is provided on a 5-point scale, ranging from a score of 1 
(very low stress) to 5 (very high stress). In addition, stress levels can be listed as 0, meaning 
an unknown level of stress. This is usually the result of noisy or missing measurements; often 
caused by poor contact of the DTI-2 to the skin. As the level of skin conductance often varies 
between individuals, a baseline level of stress is determined for each participant, and used to 
rate the estimated stress levels on the 5-point scale. 
For each participant, the DTI-2 data recorded during the study is stored in a number of files. 
This data is further split into sessions; a session is defined as a series of measurements in 
which subsequent measurements are separated in time by less than 60 seconds. Different 
sessions typically indicate moments where the DTI-2 was switched off and removed, usually 
during the night. 

After stress levels are calculated for each session, the annotation provided by the diaries is 
used to determine the stress levels during periods of agitation or aggression, named events. 
Unfortunately, not all such events are captured in the data, as they may occur before the DTI-
2 has been put on in the morning, or after the DTI-2 is removed during the evening, while 
bathing, and so on. In addition, missing data can result from cases where the DTI-2 was worn 
but not turned on, or when it was not recharged during the night. 

In addition, events consisting of measurement periods which contained sufficiently high 
amounts of missing stress levels to make further analysis impossible were removed. Stress 
levels containing high amounts of ‘unknown’ levels (represented by the value ‘0’) are subject 
to this; a period of measurements was allowed to have at most 40% of the computed stress 
levels as unknown to be considered as valid. The number of (valid) events for each participant 
is shown in Table 4-3. 

 Participant 1 Participant 2 Participant 3 

Number of events 13 36 16 

Number of events with data 3 9 12 

Number of valid events with data 2 9 9 

Table 4-3: For each participant, the number of events (periods of agitation or aggression) 
are shown. This includes the total number of events indicated in the annotation, the 
number of events for which DTI-2 data is available, and the number of events which are 
considered valid; meaning the available data does not contain high levels of noise. 

Since the annotation in the diaries is marked in blocks of 30 minutes or of an hour, it is 
probable that the emotional state described in the diary did not persist for the entirety of the 
annotated period. For example, a 12 minute episode of aggression would in many cases be 
marked in the diaries as lasting for one hour or more. Therefore, rather than calculating the 
median stress level for the entire annotated period, a ‘stress rating’ is calculated over the 
annotated period. 
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Figure 4-5: Example of the stress rating calculation on a 46 minute window, with the 
blue line showing the stress level measurements. The 10-minute window with the 
highest total stress level is indicated by the yellow background colour, and the median 
of that window (i.e., the stress rating) is indicated by the dashed red line. 

To determine the stress rating, the following method was used: first, the 10 minute window 
for which the total stress level is maximal is found. In other words, since stress levels 
represent one minute measurements, the highest 10 consecutive stress level measurements 
were found in the annotation period. The stress rating is then given by the median of the 10 
stress levels in that window. Again, a window was only considered valid if at most 40% of the 
stress levels in the window were listed as ‘unknown’. In essence, the stress rating can be seen 
as the median stress level of the most stressful 10 minute period in the period marked in the 
annotation diary. The stress rating calculation is illustrated in Figure 4-5. 
To compare the levels of stress found during periods of agitation or aggression, a number of 
stress level samples were drawn randomly from the recorded DTI-2 measurements during the 
study, excluding any periods of agitation, aggression, or sleep. Since there is no annotation of 
these periods, they may include other stressful events, or missed events of agitation or 
aggression. However, the assumption is that on average, these samples will represent periods 
of a less stressful nature compared to the annotated agitation and aggression events, and 
provide the best available baseline for normal levels of stress of the participants. 

These samples were obtained as follows for each participant: first, a DTI-2 session was 
selected using weighted random sampling, where the weight of a session was determined by 
its duration once periods of agitation, aggression and sleep were excluded. Then, a random 
starting point was chosen in the session; only starting points which allow for an uninterrupted 
period of stress measurements were considered, meaning no periods of agitation, stress or 
sleep occurred after the starting point for the duration of the sample period.  

The stress rating for each of the samples is then determined identically as for the agitation and 
aggression events, i.e., the median of the maximal 10 minute window of stress levels is 
determined.  
Further, it is important to consider the duration of the selected samples; a longer duration will 
statistically lead to higher overall stress ratings, and vice versa. It is therefore important to 
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choose the durations appropriately. For the results below, the duration of the random samples 
was set to the median duration of the events under consideration. 

Results   

To investigate the efficacy of the stress level measurements provided by the DTI-2, the 
calculated stress ratings of the agitation and aggression events is compared to the stress 
ratings of the randomly collected samples. Since stress levels are represented by ordinal 
numbers on a 1-5 scale, and the calculated stress ratings also represent ordinal values as a 
result, the use of a non-parametric statistical test is appropriate. One possibility is to use the 
Mann-Whitney U test to compare the medians of the agitation and aggression events to the 
random samples. However, the two compared populations share data points obtained from the 
same participants. This may threaten the assumption of independence between both 
populations, especially given that measured skin conductance values are known to vary 
between people. 

In an attempt to alleviate this issue, the Wilcoxon signed rank test is used instead, a non-
parametric paired difference test for related or repeated measurements. In essence, the test 
determines whether or not the median difference between the paired values is equal to zero. 
Unfortunately, there are no clear pairs here, as there relatively few events compared to 
potential baseline samples, and there is no way of knowing which of the random samples are 
an accurate representation of the baseline stress. 

One option is to select an equal number of samples as there are agitation and aggression 
events. The downside of this is that many potential baseline measurements will be ignored, 
and selecting only a few samples will result in high variance. Instead, the selected approach is 
to select multiple samples for each event, and use the median stress rating of the selected 
samples as the paired value for that event. In total, 100 samples are selected for each 
participant, and split between the events for that participant. 

 
Participant 1 Participant 2 Participant 3 All 

stress 
events 

random  
samples 

stress 
events 

random  
samples 

stress 
events 

random  
samples 

stress 
events 

random  
samples 

Median stress rating 2 3 4 2 4 3 4 3 

Mean stress rating 2.000 3.263 3.556 2.300 3.778 3.407 3.500 2.946 

Valid data points 2 36 9 80 9 86 20 202 

Table 4-4: The median and average stress rating values overall and for each of the three 
participants, listed for the agitation and aggression events (stress events) and for the 
randomly selected samples. In addition, the number of valid stress events and random 
samples are shown. 

In Table 4-4, the median and average stress rating values are shown for the agitation and 
aggression events, and for the random samples. Overall, it can be seen that the median and 
mean stress rating are higher for the agitation and aggression events compared to the random 
samples. This is supported by the Wilcoxon signed rank test comparing the paired events and 
selected samples (W=119, p=0.042, Z=2.0339), indicating that the median difference between 
the pairs different from zero with 95% confidence. For this test, and the results listed in Table 
4-4, the sample duration was set to 108 minutes, the median duration of the agitation and 
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aggression events. It is interesting to note that the trend of higher stress levels during agitation 
or aggression events is reversed for Participant 1 – this is likely due to variance caused by the 
extremely low number of recorded agitation and aggression events for that participant. 

Testing for each participant individually yielded no significant results; in this case, the already 
small sample size of 20 events is reduced even further, making it difficult to reach meaningful 
conclusions. 

Discussion  

The results in this study give an indication that the stress levels reported by the DTI-2 are 
indeed higher under conditions of agitation or aggression, compared to the levels of stress 
reported overall. While this is encouraging, there are still limitations to this study that would 
suggest that further investigation is helpful. Most notably, the study only consists of 3 
participants in total, leaving the question whether the results can be generalized to other, new 
participants. While two of the current participants show a higher median stress rating during 
events, the remaining participant shows the opposite trend, although only two valid events are 
available for that participant. 

In addition, it is noticeable that many of the annotated events lack accompanying DTI-2 
measurements. This is in particular the case for Participants 1 and 2. For Participant 2, many 
of the annotated cases of agitation occur during the night, often lasting for several hours; these 
cases may refer to periods of restlessness or poor sleep. Since the DTI-2 is not worn during 
the night, such cases are naturally missed. Similarly for Participant 1, a considerable number 
of the reported events occur in the morning or evening, possible before the DTI-2 is put on or 
after it has been removed. In addition, there are numerous missing values for Participant 1. 
This can be caused be an ill-fitting (e.g., oversized) wristband, although the exact cause is 
difficult to determine. Missing values were much less common for the other two participants. 

If cases of agitation (in particular) or aggression are indeed very common during the night, for 
further studies it would be valuable to record these as well. Currently, the battery charge of 
the DTI-2 is not sufficient to keep recording throughout the night. An alternative would be to 
use two devices that can be switched each day. Furthermore, newly developed versions of the 
DTI (e.g., the ‘DTI-3’) are likely to be more energy efficient, allowing for longer periods of 
recording. 

The interpretation of the statistical test also depends on a number of assumptions. First, the 
assumption that the random samples provide an accurate measure of the participants’ baseline 
stress level. It is difficult to accurately establish this as there is no annotation for such 
moments. In further studies, it might be desirable for nursing staff to also annotate moments 
of perceived calm, as this might serve as a more accurate comparison to the agitation and 
aggression events, and show a more pronounced effect compared to random samples. 

A second assumption is that the baseline levels of skin conductance for the participants do not 
change over the course of the study, as the events and samples compared can be recorded at 
different time points in the study. It is for example known that physical activity or room 
temperature can influence skin conductance levels, and as such, there can be an effect of time 
on the differences between the computed pairs. An alternative to the current approach is to 
select a sample directly before or after an event. However, this has its own downsides, as the 
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state of the participant at the time before or after an event is not described, and the two stress 
rating values when measured close together may be highly correlated. 

Further, even with using a paired test, there are still multiple pairs per participant in the 
population. The Wilcoxon signed rank test assumes that the tested pairs are independent; it is 
unknown to what extend this assumption is pressured by within-participant effects. The fact 
that differences between participants are tested, rather than the individual stress rating values, 
should help mitigate these effects at least to an extent. 

An additional complication for the observed stress level values is the amount of movement of 
the participant, as being more active generally increases arousal. When investigated using the 
accelerometer data from the DTI-2, participants indeed show slightly higher levels of activity 
during events of agitation or aggression compared to the random samples. It is unlikely that 
this difference fully explains the increases in stress levels however. The higher amount is 
movement during events is likely due to being more animated compared to normal. 

In conclusion, this study shows there are encouraging results suggesting that stress levels 
reported by the DTI-2 are higher under conditions of agitation or aggression, compared to the 
reported levels of stress overall. Even so, due to the limitations discussed, further study with 
additional participants would be required to fully establish the efficacy of the stress 
measurements provided by the DTI-2. 
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4.4  @Home trial 

Background  

The aim of the @Home study is to investigate exercise detection using data fusion on the 
sensor outputs of the DTI-2 wristband and SmartThings devices. In the study, the DTI-2 
device was used to measure activity levels, while SmartThings devices were used to provide 
event-based data. The set of exercises carried out by the participants were typical of those that 
are useful to detect as a means of measuring the health and activity of people with dementia. 

Methods  

The study took place in a laboratory in Dublin City University (DCU). The participants were 
individuals with good cognitive health ranging in age from mid-twenties to late-forties. Prior 
to starting the study, each participant was informed of the tasks to be performed. The DTI-2 
device was synchronised to the data-logging computer and initialized. The device was 
immediately powered-on and placed on the participant's left wrist.  It was verified that there 
was good skin contact with the device electrodes. For the purposes of calibration and 
synchronization, the participant was asked to shake their left arm vigorously in order to 
generate a signal on the DTI-2 device that can be used to mark the beginning of the 
experiment.  
The protocol of the study and sequence of exercises performed was as follows:  

1) Preamble and setup 
2) Sit-to-stand  / stand–to-sit transition (x3) 
3) Lift weights (left hand)  
4) Lift weights (right hand) 
5) Walk 70m  
6) Ascend / descend stairs 
7) Walk 70m  

The sit-stand transition is a simple exercise in which the participant moves from a seated 
position to a standing position, or vice versa. This is of clinical interest as it can help to 
signify if the user is becoming sedentary. Furthermore, the length of time to perform this 
transition can be an indicator of motor function, which typically declines as a result of 
cognitive impairment. 

The participants begin the protocol seated in a chair. A SmartThings multi-sensor is placed on 
the leg of the participant, such that it will record the acceleration associated with each 
movement of standing and sitting.  The participant performs this activity three times. 
For the lift weights exercise, the participant is asked to perform a simple 'bicep curl' where a 
weight is lifted through movement in the forearm only. In this study, a SmartThings multi-
sensor is attached to the weight. The participant performs the exercise firstly with the left 
hand (on which the DTI-2 is worn). The weight is lifted 10 times.  The set is then repeated 
using the right-hand. 

As part of the walking exercise, the participants walk 70 meters from the laboratory to the 
stairwell. This walk is conducted at normal walking pace. A SmartThings contact sensor 
attached to the laboratory door registers an event when the door is opened for access to the 
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corridor. The participant walks the same distance to return from the stairwell to the laboratory 
after performing the stairs exercise. 
In the stairs exercise, the participant ascends one flight of stairs, pauses at the top, and then 
descends two flights. He/she then ascends one flight to return to the starting point. A multi-
sensor is placed at the stairwell. 

As mentioned in Chapter 3, data is collected from three types of sensors. Data collection for 
the DTI-2 device was done as follows: first, the DTI-2 was synchronized and initialized for 
each participant. On completion of the protocol, the device was removed by the participant 
and switched off. It was then connected to the computer via USB, and the relevant data files 
were removed for analysis. The DTI-2 was then set to a clean state, ready for the next 
participant. 

At the end of each participant session, the logs for each of the four SmartThings devices 
(three multi-sensors and one door sensor) were downloaded and stored with the DTI-2 data 
for that participant. The SmartThings API was used to access the raw-data log for each 
device. The raw data was later parsed to extract the sensor values. 

Finally, manual annotation was recorded during the study to provide additional timestamp 
information for each exercise. This was facilitated using a simple Python script. The manual 
annotation include the name of the exercise or event (e.g., start of the experiment), as well as 
the time stamp marking the start of the exercise / event. 

Using the methods described in Section 3.2, an activity sequence was created for each 
annotated activity for each of the participants. Then, each of the four activities was modelled 
as a separate HMM. To determine which exercise corresponds to a given activity sequence, 
the forward-backward procedure is applied to each of the four exercise HMMs to derive the 
likelihood of the activity sequence matching each exercise HMM, as detailed in Section 3.2.  
The activity sequence is then classified as the exercise corresponding to the HMM with the 
highest likelihood score, out of the four exercise HMMs. If the classified (or predicted) 
exercise corresponds to the exercise listed in the annotation, the classification is considered 
correct; otherwise, it is considered misclassified. As, within the context of the study, all 
activity sequences represent recorded exercises, there is no need for further reasoning (for 
example through SCEP) in order to determine if the activity sequence does not match any of 
the four defined exercises. 

A cross-validation approach was used to train the HMMs using the MA parameter estimation 
algorithm, and to subsequently test the performance of the models on the remaining activity 
sequences as a test set. The folds for cross-validation were chosen such that each participant 
represented a fold, i.e., each time the four HMMs were trained on the activity sequences of 
four of the participants, and tested on the activity sequences of the remaining participant. This 
way, there are no activity sequences of the tested participant in the training set, and as such, 
the resulting accuracy scores should provide an indication of the exercise detection 
algorithm’s ability to generalize across participants. 

Results   
As previously mentioned, in total four different activities were considered: sit-to-stand, 
walking, climbing stairs, and lifting weights. For the lifting weights activity, both lifting 
weights with the left hand and right hand were included as a single activity (note that for all 
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participants, the DTI-2 wristband was worn on the left wrist during the study). The number of 
activity sequences for each participant and activity are shown in Table 4-5. It can be seen that 
for one of the participants, the climbing the stairs activity is missing, and only a single 
walking activity is present. Generally, participants have two walking activities (in the 
protocol, one before and after the ‘climbing the stairs’ activity), as well as two lifting weights 
activities (once with the left hand, and once with the right). 

 Sit-to-stand Climbing stairs Walking Lifting weights 

Participant 1 1 0 1 2 

Participant 2 1 1 2 2 

Participant 3 1 1 2 2 

Participant 4 1 1 2 2 

Participant 5 1 1 2 2 

Table 4-5: The number of activity sequences for each participant and activity. 

Using the cross-validation procedure discussed above, a five-fold classification accuracy of 
85% was achieved. The resulting predicted exercises are shown in the confusion matrix of 
Table 4-6. Here, it can be seen that many of the error made were due to misclassification of 
activities as walking. Overall, the majority of exercises were recognized correctly by the 
exercise detection algorithm. 

Ground truth 

Predicted exercises 

Sit-to-stand Climbing stairs Walking Lifting weights 

Sit-to-stand 4 0 1 0 

Climbing stairs 0 3 1 0 

Walking 0 1 8 0 

Lifting weights 0 0 1 9 

Table 4-6: Confusion matrix showing the predicted exercises for each sequence shown 
horizontally versus the actual (ground truth) exercise listed in the annotation shown 
vertically. 

Finally, the precision and recall on the individual exercises is shown in Table 4-7. While the 
individual precision and recall statistics seem to suffer from considerable variance, likely due 
to small sample sizes, it can be seen that the walking exercise shows the lowest precision out 
of the four exercises. This is in line with the earlier observation that many of the other 
misclassified exercises are incorrectly identified as walking. 

 Sit-to-stand Climbing stairs Walking Lifting weights 

Precision 100% 75% 73% 100% 

Recall 80% 75% 89% 90% 

Table 4-7: Precision and recall of the individual exercises. 
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Discussion  

As mentioned in the results section, an accuracy of 85% was achieved using 5-fold cross-
validation on the exercise classification task. From Table 4-6, it can be seen that of the 
exercises that were not identified correctly, most were mistakenly identified as walking. This 
is perhaps not surprising given that walking is also the dominant class in this data set – that is, 
the walking exercise has the highest total length of recording. A possible consequence of this 
is that the HMM for the walking exercise has better parameter estimation results compared to 
other exercises, and returns relatively high likelihood scores on walking data, and on similarly 
looking data from other exercises as well, causing ambiguous exercise sequences to gravitate 
to the ‘walking’ class. 

Another possibility is that, since there are few SmartThings sensor measurements associated 
with the walking exercise, exercises during which the associated SmartThings sensor(s) did 
not trigger (e.g., no chair contact registered when doing sit-to-stand exercises) are likely to be 
identified as walking. However, from manual inspection it can be seen that for at least some 
exercises where an associated SmartThings sensor did not trigger, the exercise was classified 
correctly regardless. 

The fact that the walking exercise represents the dominant class is even more pronounced 
when the BW algorithm is used for parameter estimation. In this case, the likelihood scores 
obtained for the walking exercise model often exceed the likelihood scores for other models, 
even on exercise sequences from non-walking exercises. When using the BW algorithm, 
misclassification of exercises as walking is considerably more common compared to the MA 
algorithm. As a result, the cross-validation accuracy using the BW algorithm is only 65%. 

While results are promising, there are a number of limitations to the current study. First, the 
current study only contains data from 5 participants. Although cross-validation results already 
show good generalization within the 5 participants, recordings from additional participants 
would be required to claim generalization beyond the initial group of participants. In addition, 
it is conceivable that the results of model parameter estimation could be improved with data 
from further participants. This is particularly likely for exercises with relatively little recorded 
data (e.g., sit-to-stand exercises), and for the BW parameter estimation method in general. 
With more training sequences, the difference in performance between the MA and BW 
algorithms might well decrease. 

Second, the study described here was performed by relatively young, healthy participants. 
The question therefore remains whether similar results would be obtained for participants 
with dementia or cognitive impairment. A further study would be required to determine if 
exercises can be detected for this group with the same level of accuracy. 

For practical implementation, a further step is required from detecting and distinguishing 
between annotated exercises, to detecting exercises from day-to-day measurements, which 
may include exercises as well as other types of activities. One approach for moving from 
detection of individual exercises to detection of exercises in day-to-day measurements is the 
use of a sliding window of sensor observations. This removes the need for annotation of 
exercise start and end times, although detection accuracy is likely to suffer slightly as the 
windows may contain sections of observations of other activities, or may represent only part 
of the entire exercise. 
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To distinguish between exercises and other activities, a number of approaches are possible. 
First, additional HMMs could be created for (either specific or general) other activities. This 
would allow the data fusion algorithm to distinguish between the specific exercises and other 
non-exercise activities. Additionally, a likelihood threshold could be introduced for the 
exercise models – an observation sequence would only be accepted if its likelihood exceeded 
the threshold value, otherwise it would be classified as a non-exercise activity. To determine 
the effectiveness of these approaches, further studies would be required. 

In conclusion, this study shows promising initial results regarding the feasibility of exercise 
detection – however, further studies will be required to demonstrate that these results 
generalize to other participants, and to show that this method will be effective in a daily-life 
setting. 
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4.5  Conclusions 
This chapter described the results of the WP3-related trials performed across the three settings 
@Lab, @NursingHome, and @Home. In the @Lab trial, the motor functioning of elderly 
participants with AD, MCI and healthy controls was investigated under the dual-task 
paradigm. The findings of this study show that there are subtle changes in gait parameters that 
may help distinguish healthy elderly from elderly with cognitive impairment, in particular 
walking speed and cadence. Possibly due to the small number of participants, there were no 
significant differences between healthy elderly and MCI patients. 

The @NursingHome study investigates the efficacy of the DTI-2 stress measurements for 
nursing home residents by examining the median stress levels during moments of agitation or 
aggression, compared to randomly sampled moments from daily life. The study shows there 
are encouraging results suggesting that stress levels reported by the DTI-2 are higher under 
conditions of agitation or aggression, compared to the reported levels of stress overall. Due to 
study limitations such as the number of participants, further research is required however to 
fully establish the efficacy of the stress measurements provided by the DTI-2. 
Finally, the @Home trial investigates the accuracy of the exercise detection algorithm on four 
selected exercises commonly prescribed for PwD. The study also shows promising initial 
results regarding the feasibility of exercise detection – however, further studies will be 
required to demonstrate that these results generalize to other participants, and to show that 
this method will be effective in a daily-life setting. 

Overall, all of the studies discussed show strong results, although in all cases, the studies are 
limited by the overall number of participants (less strongly so for the @Lab study). Therefore, 
further research on these topics will be valuable to see if these results translate to other 
participants and populations. Even so, all trials show promising results for further study. 
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5  Integration of Components and Usage in Pilots 
This section aims to give an overview of integrated modules and their usage across pilots, 
interlinking the progress made in the present work package with integration and clinical 
piloting (WP7 and WP8). This overview concerns not only the most recent developments, 
presented in this deliverable, but in the entire work package, effectively reflecting its total 
contribution to clinical dementia care. It also lists the most notable results, while pointing the 
reader to respective deliverables for further reading. 

Table 5-8 captures all sensor and component integration, offered modalities and usage in 
pilots across the consortium. Further details are given below. While many sensors were 
integrated and explored in the context of early fusion (WP3 efforts), other more recent sensors 
were integrated and used in the framework of the 3rd and 4th year rapid prototyping effort in 
the DemaWare framework (WP7). This section ties together all sensors and components 
relevant to WP3. 

DTI-2 is the main wearable sensor for physical activity used in Dem@Care (WP3 
deliverables). The majority of processing methods in WP3 has been based on and exploited 
the rich sensor modalities, i.e. moving intensity and skin conductivity, to more usable and 
meaningful ones. The methods of WP3 have been used to extract energy expenditure, 
physical activity and stress levels and are widely integrated and regularly monitored in 
residential pilots @NH in Luleå and @Home in Dublin. Also, both @Lab pilots have utilized 
DTI-2 during all trials to log physical activity levels.  
At the cost of its rich sensing capabilities, which enabled stress and activity levels processing, 
DTI-2 presents some limitations, such as its short battery life, large size and offline-only 
processing. These limitations, which make the device less suitable for 24/7 monitoring, 
together with the technological developments during the lifetime of the project, have urged us 
to explore and pilot additional sensors.  After all, Dem@Care is not exclusive to one device 
per modality. These devices, integrated and piloted in @Home Thessaloniki (WP7, WP8) 
offer a different set of advantages such as high comfortability, long battery life and real-time 
feedback. However, they still cannot fully replace DTI-2 in the context of Dem@Care, as they 
do not offer skin conductivity and rich accelerometer measurements to enable the system’s 
processing for stress and activity level extraction. Therefore, as reflected on Table 5-8, each 
sensor optimally adapts to the most suitable pilot scenario. 

Jawbone UP242 (D7.8) is a popular retail wristband. It is used as the main @Home 
Thessaloniki physical activity sensor, due to its small size, comfortability and long battery life 
of up to seven days. It offers its own estimation of steps taken, which is translated into 
distance and calories, giving a measure of physical activity. It is also used as an additional 
sleep sensor (next to Withings Aura), in case where the user is able to remember to press a 
button before sleep. 

Microsoft Band3 (D7.8, D9.12) is an additional wrist-worn sensor in @Home Thessaloniki, 
which integrates the most recent wearable sensing technologies in retail. It was chosen for its 
high-suitability for real-time and mobile health applications. Therefore, it is mostly used in 

                                                
2 Jawbone UP: https://jawbone.com/up 
3 Microsoft Band: http://www.microsoft.com/microsoft-band/en-us 
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HealthMon, a mobile health application, built and piloted in @Home Thessaloniki, in an 
effort to commercialize some of the methods emerging from Dem@Care. Overall, from a 
WP3 perspective, the device has offered pilots the means to monitor physical activity and 
sleep, but not stress, while it was mostly used for exploitation in HealthMon, as detailed in 
D9.12. 

SmartThings (D3.4) is the main sensor explored in WP3 to evaluate the lifestyle monitoring 
capabilities. The sensor has been extensively investigated, on its own, collecting data from 
@Home deployments in Dublin (offline collection, without an online connection to the 
system). This data has been used for the intelligent detection of physical exercise with 
combining wearables and lifestyle sensing, as presented in this deliverable. 
Wireless Tags4 (D7.8) in combination with Plugs5 is the lifestyle sensing solution that was 
used in piloting instead, offering the same functionality with SmartThings but in a 
significantly reduced price. Namely, Tag offer sensors for object motion, presence (IR 
motion) and door-window contact sensors in a much more compact size and smaller price and 
are complemented with highly efficient and affordable Plugs for utility usage through energy 
measurement. This has allowed the deployment of several wireless sensor networks of Tags in 
all four of the Thessaloniki @Home pilots as reported in D8.4 and D8.5. Object usage was 
also used in all the Thessaloniki @Lab trials, of the long and short protocols, as reported in 
D8.4. 

Gear4 SleepClock, Beddit and Withings Aura (D7.8) are all the sleep-sensing solutions 
investigated in the framework of Dem@Care and reported in D3.4. Gear4 was the solution 
adopted since the very beginning, and has been since satisfying the sleep monitoring needs for 
monitoring phases of deep and light sleep, awake segments and interruptions in time, in @NH 
Luleå and @Home Dublin. Its limitations include offline data transfer to the system, having to 
initialize sleep (done by a carer) and its presence on the nightstand. 

However, as technology has progressed during the lifetime of the project, sensors of more 
advanced features have emerged in the market. The integration and interoperability 
infrastructure of Dem@Care has included the Withings Aura6 sleep sensor from retail. The 
sensor features always online connection to the system, no need for pressing buttons and in-
depth sleep monitoring. The @Home Thessaloniki pilot has adopted this technology entirely 
and benefited from in-depth sensing (D8.4, D8.5). REM Sleep monitoring has even resulted 
in the pre-emptive diagnosis of Parkinson’s in one case (D8.5). Other pilots have also 
evaluated the integrated technology, along with yet another sleep sensor from retail, Beddit7 
sensor. This sensor evaluation can be found in D3.4. Ultimately, both end-users and clinicians 
in @Home Dublin and @NH Luleå, were too accustomed to the use of Gear4 and did not 
need to modify their current deployments. 
CEP (D3.5) is a processing component focusing in real-time feedback and developed in the 
framework of the present and previous WP3 deliverables. CEP employs semantic 
technologies to provide the means for early fusion of events and real-time alerts using various 
criteria. CEP has been used in practice with DTI-2 offline (due to sensor limitations) and 
                                                
4 Wireless Tags: http://wirelesstag.net 
5 Plugs: Plugwise Circle and Stealth from http://plugwise.com 
6 Withings Aura: http://www.withings.com/us/en/products/aura 
7 Beddit: http://www.beddit.com/ 
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synthetic data to provide aggregation and event fusion. However, real-time detection of 
atomic events in Dem@Care is limited (the only provider being CAR and very recent sensors 
in WP7). Therefore, WP3 has performed a primary reference implementation of an integrated 
CEP component for early fusion, providing the infrastructure for flexible, semantic early 
fusion, given its proper integration with suitable components, domain models and rules. 
Meanwhile, fusion and alerts are covered thoroughly in the form of high-level event fusion in 
WP5 (e.g. in D5.4) e.g. effectively providing alerts from CAR and patient profile knowledge. 

Module Type Modalities Integr
ation 

Usage in Pilots 

@Lab @NH @Home 

Nice Thess Luleå Dublin Thess 

Phillips 
DTI-2 

Activity 
Sensor 

Ph. Activity, 
Stress 

� � � � � - 

Jawbone 
UP24 

Activity 
& Sleep 
Sensor 

Ph. Activity, 
Sleep 

� - - - - � 

Microsoft 
Band 

Activity 
Sensor 

Ph. Activity, 
Sleep 

� - - - - � 

Smart 
Things 

Lifestyle 
Sensor 

Object usage, 
Presence, 
Door-window, 
Utility Usage 

- - - - � - 

Wireless 
Tags 

Lifestyle 
Sensor 

Object Usage, 
Presence, 
Door-window 

� - � - - � 

Plugs Lifestyle 
Sensor 

Utility usage � - � - - � 

Gear4 
SleepClock 

Sleep 
Sensor 

Sleep � - - � � - 

Beddit Sleep 
Sensor 

Sleep - - - - tested tested 

Withings 
Aura 

Sleep 
Sensor 

Sleep � - - tested tested � 

CEP Analysis Problems and 
Correlations of 
Ph. Activity, 
Stress, Sleep 

� - - � � � 

Exercise 
Detection 

Analysis Exercise - - - - � - 

Table 5-8: Integration of all WP3 components and usage in pilots. 

 



FP7-288199 

D3.5   Health and Lifestyle Monitoring and Analysis,  Early Fusion & Mining 

 Page 48 
 

 

Exercise detection (D3.5) constitutes a method to detect physical exercise in time and was 
developed in the framework of D3.5, In order to discriminate given exercises from general 
physically intense activities such as walking, the method combines physical with lifestyle 
sensing such as object usage. Namely, DTI-2 and SmartThings were used in the study which 
has reached fruitful results. Yet, it is not integrated into the system due to various constraints 
including its primary form, the non-integration of Smart Things in the system and lack of yet 
more powerful visual sensing to contribute to exercise detection.    
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6  Conclusions 
 
This deliverable describes the final results of WP3. 

 
Dem@Care – WP3 has deployed various sensors, and developed algorithms to measure 
physiological and lifestyle information from patients. Sensors and developed algorithms have 
been successfully applied in all trials. 

Early fusion in Dem@Care allows the extraction of conclusions concerning the person’s state 
by mining the physiological and lifestyle data that can be used for the early detection of 
unusual events or patterns. Complex Event Processing (CEP) technology has been proposed 
as good candidate for merging and extracting information from sensors and different other 
sources. After having introduced Complex Event Processing, its concepts, its proposed 
implementation and its usage in the first deliverable D3.2, this deliverable focuses on 
enhancements of this technology especially towards semantic reasoning and on its benefits for 
clinicians and doctors.  A new formalism has been proposed and investigated to add semantic 
knowledge (especially the use of ontologies) to the events and to the rules definition, in order 
to be able to enhance the efficiency of the rules and to facilitate the work for the user by 
allowing him to write rules with less technical background. This mechanism is under 
implementation, and the next steps will be to adapt a user interface and a language to help him 
with the rules definition. 
Sensor data fusion has been applied for achieving exercise detection: monitoring of physical 
activity is realized via a wearable wrist device, DTI-2, and combined (fused) with 
SmartThings sensor modalities. The exercise detection algorithm can be used to distinguish 
between the four trained exercises; sit-to-stand, lifting weights, walking and climbing stairs. 
The detection of these exercises can provide valuable feedback to clinicians regarding the 
health and adherence to prescribed exercise of the user. The algorithm has been successfully 
tested, and can thus provide a basis for future development of exercise detection systems for 
PwD, as well as for integration into the overall Dem@Care system.  
Various trials have been completed and comprehensively analysed in the context of WP3. 
Currently, the WP3 trials have been completed in all three settings, i.e., @Lab, 
@NursingHome, and @Home.  

In the @Lab study, motor functioning under the dual-task paradigm has been explored with 
for people with various stages of cognitive decline. The @Lab trial aimed at exploring the 
relation between gait parameters measured by means of ambulatory actigraphy during a single 
and dual task and cognitive impairment in order to obtain more insights into the utility of such 
a paradigm as an additional indicator for the diagnosis of MCI and early AD.  The findings of 
this study show that there are subtle changes in gait parameters that may help distinguish 
healthy elderly from elderly with cognitive impairment, in particular walking speed and 
cadence. 

The @NursingHome study did explore the efficacy of the stress level measurements provided 
by the DTI-2 skin conductance wristband for nursing home residents with cognitive decline. 
Specifically, this study aims to determine if states of agitation or aggression result in 
increased levels of measured stress, compared to the levels of stress normally observed. The 



FP7-288199 

D3.5   Health and Lifestyle Monitoring and Analysis,  Early Fusion & Mining 

 Page 50 
 

 

results show encouraging results suggesting that stress levels reported by the DTI-2 are higher 
under conditions of agitation or aggression, compared to the reported levels of stress overall. 
This establishes the baseline for a future comprehensive trial with additional participants, to 
fully establish and validate the efficacy of the stress measurements provided by the DTI-2. 
The @Home study was aimed at investigating exercise detection using data fusion of the 
DTI-2 wristband and SmartThings devices. In the study, the DTI-2 device was used to 
measure activity levels, while SmartThings devices were used to provide event-based data. 
This study shows promising initial results regarding the feasibility of exercise detection; an 
accuracy of 85% was achieved using 5-fold cross-validation on the exercise classification 
task. Further studies will be required to demonstrate that these results generalize to all 
subjects, and to show that this method will be effective in a daily-life setting. 
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