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Executive Summary 
D4.5 presents the final version of the audio-visual analysis tools developed for Dem@Care 

and deployed in the integrated system and project pilots. The aim of the audio-visual analysis 

has been the assessment of the individual’s overall status through the recognition of activities 

of daily living for monitoring of behavioural and lifestyle patterns, cognitive status, mood. 

Their integration into the final system enhances the description of the person’s status and the 

progression of their condition due to the complementarity of the sensor data and the higher 

level information extraction through Semantic Interpretation (SI). The results are expected to 

provide new insights into dementia and its evolution over time, as well as the early detection 

of deterioration in the individual’s status. An initial version of the tools developed within 

Dem@Care and the first methods used was described in D4.2, while D4.5 presents their final 

versions that expand and improve upon the previous ones. Finally, D4.5 presents real world 
experimental evaluations of tools in the integrated Dem@Care system deployed in the pilots. 

 

This report consists of 4 main chapters, following the structure of D4.2.  

Chapter 2 describes the research conducted for tracking individuals through a scene using 

multiple cameras, and shows how the proposed approach improves on the state of the art 
algorithms for single camera tracking.  

Chapter 3 presents the research carried out on video analysis for Action Recognition through 

Object Recognition and Room Recognition on video data from a wearable camera.  

Chapter 4 describes the work done for Activity Recognition and Person Detection from video 
and RGB-D cameras. 

Chapter 5 presents Periodicity Detection on longitudinal lifelog data where signal analysis 

techniques are used to identify routines and periodic behaviour of an individual.  

Chapter 6 presents a holistic component integration and pilot usage section, which 

summarizes this entire Work Package contributions of research and development, to real-

world piloting and the clinical results in the context of Dem@Care. 
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 Introduction  
 

The central objective of WP4 is to analyse audio-visual recordings of people with dementia so 

as to recognise activities and situations of interest, assess their mental and emotional state and 

extract behavioural and lifestyle profiles, trends, and alarms. The activities of interest and the 

assessment of the individuals’ status are based on the clinical requirements described in D2.2 

and system functional requirements presented in D7.1. The outcomes of the audio-visual 

situational analysis will be fused with the other sensor data for a comprehensive picture of the 

person’s condition and its progression, and will be critical in designing and implementing the 

optimal approach for personalised care. 

Deliverable D4.5 includes the description of the final version of Dem@Care tools for 

analysing visual data and their evaluation on the datasets obtained during data acquisition 

within Dem@Care. The visual analytics aim at posture recognition, action recognition, 

activity monitoring, life-logging. D4.5 extends deliverable D4.2, which presented a study of 

the state of the art and a description of the first set of tools, by improving upon the methods 
presented in it, and expanding the experimental evaluation.  

 

D4.5 consists of 4 main chapters, following the structure of D4.2.  

Chapter 2 describes the research conducted for tracking individuals through a scene using 

multiple cameras, and shows how the proposed approach improves upon state of the art 

algorithms for single camera tracking.  

Chapter 3 presents the research carried out on video analysis for Action Recognition through 
Object Recognition and Room Recognition on video data from a wearable camera.  

Chapter 4 describes the methods developed for Activity Recognition and Person Detection 

from video and RGB-D cameras, as well as their results on real-world recordings. 

Chapter 5 presents Periodicity Detection on longitudinal lifelog data where signal analysis 
techniques are used to identify routines and periodic behaviour of an individual.  

Chapter 6 presents a holistic component integration and pilot usage section, which 

summarizes all WP4 research and development contributions to real-world piloting, as well as 
the clinical results in the context of Dem@Care. 
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 People Tracking for Overlapped Multi-cameras 

 

2.1  Introduction 

People-tracking plays an important role for activity recognition, as it allows to disambiguate 

between different individuals in the same scene, so as to correctly recognize the activities they 

are carrying out. In Dem@Care we install several cameras so as to completely cover the scene 

under consideration. In this deliverable, a new tracking approach using data from multiple 

cameras is presented. We evaluate the proposed method on the Dem@Care data and compare 

its results with a mono-camera tracking algorithm. The comparison shows a considerable 
improvement of tracking performance while using the proposed approach. 

 

2.2  Proposed Multi-camera Tracking Approach 

 

2.2.1   Description of the Proposed Approach 

This approach comprises of three steps: mono-camera tracking, trajectory association and 

trajectory merging. The objective of mono-camera tracking is to compute the trajectories of 

each person in the scene, corresponding to each camera viewpoint. In the second step, we 

search for the best matching for trajectories from one viewpoint to the other. In the last step, 

after computing the best matching pairs, we compute the merged trajectories, taking into 

account the reliability of trajectories extracted from the mono-view. 

 

2.2.2   Mono-camera tracking 

Object tracking from one camera relies on the computation of object similarity across 

different frames using eight different object appearance descriptors: colour histogram, colour 

covariance, 2D and 3D displacement, 2D shape ratio, 2D area, HOG and dominant colour. 

Based on these descriptor similarities, the object similarity score is defined as a weighted 

average of individual descriptor similarity. Trajectories are then computed as those 
maximizing the similarities of the objects that belong to the same trajectory.   

 

2.2.3   Trajectory Association 

The association problem is related to the need for establishing correspondences between 

pairwise similar trajectories that come from different cameras. The question is: which object, 
visible from one camera, can be associated with which objects visible from the other cameras. 

For two cameras, the association or correspondence may be modelled as a bi-partite matching 

problem, where each set has trajectories that belong to each camera. Let Cl  and Cr denote two 

overlapping cameras. For each camera, a set of trajectories Sleft and Sright is defined. A bi-

partite graph G = (V; E) is a graph in which the vertex set V can be divided into two disjoint 

subsets  Sleft and Sright, such that every edge 𝑒 ∈ 𝐸 has one end point in Sleft and the other end 

point in Sright.  
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(a) (b) 

Figure 2-1: (a) Bi-partite graph with hypothetical associations. (b) Associations of trajectories from 

each camera after Hungarian algorithm is applied. 

 

Let 𝑃𝑂𝑖represent the ith physical object that belongs to trajectory Trj
Ck observed by camera Ck,, 

where k = {l, r}, 𝑛 is the length of the trajectory j. Each trajectory is composed of a time 
sequence of physical objects:  

𝑇𝑟𝑗
𝐶𝑘 = { 𝑃𝑂0, 𝑃𝑂1, … , 𝑃𝑂𝑖, … , 𝑃𝑂𝑛 } (1) 

Consequently, camera Cl and Cr have a set of trajectories of size N and M called Sright and Sleft : 

𝑆𝑟𝑖𝑔ℎ𝑡 = { 𝑇𝑟0
𝐶𝑟  , 𝑇𝑟1

𝐶𝑟  , 𝑇𝑟2
𝐶𝑟  , . . . , 𝑇𝑟𝑁

𝐶𝑟} 

𝑆𝑙𝑒𝑓𝑡 = { 𝑇𝑟0
𝐶𝑙  , 𝑇𝑟1

𝐶𝑙  , 𝑇𝑟2
𝐶𝑙  , . . . , 𝑇𝑟𝑀

𝐶𝑙} 

(2) 

Once the bi-partite graph is built, we need to find pair-wise trajectories similarities. To 

perform this task, we use spatial and temporal trajectory features. We transform the trajectory 

association problem across multiple cameras as follows: each trajectory Trj
Ck is a node of the 

bi-partite graph that belongs to set Sk for camera Ck. A hypothesized association between two 

trajectories is represented by an edge in the bi-partite graph, as shown in Figure 2-1(a). The 

goal is to find the best matching pairs in the graph. 

 

Trajectory Similarity Calculation 

There are several trajectory similarity measurements in the state of the art. We choose the 

Dynamic Time Warping approach (DTW) [2.11] because it is conceptually simple and 

effective for our trajectory similarity calculation. DTW is a dynamic-programming-based 

technique with O (N2) complexity, where N is the length of the trajectories to be compared. 

Over the last years, several authors has been studying and applying this method [2.9, 2.12, 

2.13]. 

The NxN grid is first initialized with values of infinity (∞) that represent infinite distances. 
Each element (n, m) represent the Euclidean distance between two points Tri

Cl(n),  Trj
Cr(m) 

∀n, m ∈ [0 … N] defined as follows:  

 

 

𝑑 (𝑇𝑟𝑖
𝐶𝑙(𝑛), 𝑇𝑟𝑗

𝐶𝑟(𝑚)) = √(𝑥𝑇𝑟𝑖
𝐶𝑙(𝑛) − 𝑥𝑇𝑟𝑗

𝐶𝑟(𝑚))
2

+ (𝑦𝑇𝑟𝑖
𝐶𝑙(𝑛) − 𝑦𝑇𝑟𝑗

𝐶𝑟(𝑚))
22

 
(3) 

 

where (x, y) is the 2D location of trajectories after projecting on a reference view. 
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Figure 2-2: (a) The optimal warping path. (b) DTW results for tracklet 1 of two trajectories 
comparison. In X and Y the frames are shown. The optimal path is represented in green, and the DTW 

result is shown in red. 

 

Many paths connecting the beginning and the ending point of the grid can be constructed. The 

goal is to find the optimal path that minimizes the global accumulative distance between both 

trajectories.  

From the DTW results, we build a cost matrix with a normalized Euclidean Distance Mean 

based metric for each trajectory pair. In order to normalize the distance values computed by 

DTW, we divide a distance value by the maximum possible distance between two trajectories 
which is the diagonal of the image: 

𝐸𝐷𝑀(𝑖, 𝑗) =
𝐷(𝑇𝑟𝑖

𝐶𝑙 , 𝑇𝑟𝑗
𝐶𝑟)

√( (𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡)
2

 +  (𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ)2 )
2

 
(3) 

 

Now the bi-partite graph is complete and the weight of each edge 𝑒 𝜖 𝐸 in 𝐺 = (𝑉; 𝐸) is given 

by EDM(i, j) (Figure 2-1(a)). The task at hand now consists in finding the optimal matching 

of 𝐺, aimingto find the optimal assignment that maximizes the total cost of a matrix. To find 

the optimal matching in 𝐺 we apply the Hungarian Algorithm defined by Kuhn [2.15], given 

the cost matrix built with the 𝐸𝐷𝑀 values. The Hungarian method is a combinatorial 

optimization algorithm that solves the assignment problem in polynomial time 𝑂(𝑛3), where 

𝑛 is number of nodes or vertexes 𝑉 of the bi-partite graph 𝐺. After apply the Hungarian 

Algorithm to the matrix we got the maximum matching as is shown in Figure 2-1(b). 

2.2.4   Trajectory Merging 

Once association is done, the next step is to compute the final trajectory by merging 

corresponding trajectories from each view. To merge two trajectories coming from two 

different cameras, e.g. 𝑇𝑟𝑖 ∈ 𝑆𝑟𝑖𝑔ℎ𝑡  𝑤𝑖𝑡ℎ  0 < 𝑖 < 𝑁 and 𝑇𝑟𝑗 ∈ 𝑆𝑙𝑒𝑓𝑡   𝑤𝑖𝑡ℎ  0 < 𝑗 < 𝑀 into a 

global one TrGij , we apply an adaptive weighting method as follows: 

𝑇𝑟𝐺𝑖,𝑗
(𝑡) = {

𝑤1𝑇𝑟𝑖
𝐶1(𝑡) + 𝑤2𝑇𝑟𝑗

𝐶2(𝑡)    𝑖𝑓𝑓  𝑇𝑟𝑖
𝐶1(𝑡), 𝑇𝑟𝑗

𝐶2(𝑡)  ∃ 𝑡

𝑇𝑟𝑖
𝐶1(𝑡)     𝑖𝑓𝑓 𝑇𝑟𝑖

𝐶1(𝑡) ∃ 𝑡 ^ 𝑇𝑟𝑗
𝐶2(𝑡)  ∄ 𝑡

𝑇𝑟𝑗
𝐶2(𝑡)     𝑖𝑓𝑓 𝑇𝑟𝑗

𝐶2(𝑡) ∃ 𝑡 ^ 𝑇𝑟𝑖
𝐶1(𝑡)  ∄ 𝑡

 

(4) 

(a) 
  

(b) 
  

http://en.wikipedia.org/wiki/Combinatorial_optimization
http://en.wikipedia.org/wiki/Combinatorial_optimization
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Assignment_problem
http://en.wikipedia.org/wiki/Polynomial_time
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As we defined in Eq. (3), each trajectory is composed by a set of detections. Chau et al. [2.1] 

defined a method to quantify the reliability of the trajectory of each interest point by 

considering the coherence of the Frame-to-Frame (F2F) distance, the direction, and the HOG 

similarity of the points belonging to a same trajectory. Thus, as each physical object has 

reliability attribute 𝑅 with values [0, 1]. The weight of each trajectory is defined in term of its 

R-value as follows: 

𝑤1 =
𝑅𝑃𝑂𝑛

𝑅𝑃𝑂𝑛
+ 𝑅𝑃𝑂𝑚

 𝑤2 =
𝑅𝑃𝑂𝑚

𝑅𝑃𝑂𝑛
+ 𝑅𝑃𝑂𝑚

 
(5) 

It is important to note that w1 + w2 = 1. The merged trajectory is located in between the two 

cameras from mono-view, and is closer to the trajectory with higher reliability values. 

 

2.3  Discussion and results 

The objective of this evaluation is to prove the effectiveness of the proposed approach, and to 

compare it with a mono-camera tracking. We select five videos from the Dem@Care dataset 

recorded in the Centre Hospitalier Universitaire Nice (CHUN) hospital, which involved 

participants with dementia over 65 years old. Experimental recordings used two widely 

separated RGB-D cameras (Kinect®, Microsoft©) with 640x480 pixel resolution, recording 

between 6 and 9 frames per second. Each pair of videos has two different views of the scene, 

lateral, and frontal, with two people per view, the person with dementia and the doctor. They 

sometime cross each other or are hidden behind furniture. They exit the scene and re-enter it 
several times.   

Figure 2-3(a) shows two camera views of the scene. The blue lines represent the trajectory 

projection from the left camera to the right camera, which has been selected as reference. 

After the whole video is processed, we obtain the trajectories association and fusion for the 

doctor and patient trajectories. In Figure 2-3(b) the trajectory (𝑥, 𝑦) in terms of the time (in 

frames) is presented. The yellow is the final patient trajectory, which is in between the right 

camera trajectory, and the projection of the left camera trajectory. Figure 2-3(c) presents the 
doctor’s trajectory with the same colour annotation. 

In order to quantify our results, we use the tracking time-based metrics from [2.18]. The 

tracking results are compared against entire trajectories of ground truth data. This metric gives 

us a global overview of the performance of the tracking algorithm. In this section we present 

the overall evaluation of our multi-camera tracking approach and its comparison with the 
mono-camera tracking algorithm [2.1].  

 

Table 2.1 presents the tracking results of the proposed approach and mono-camera tracking 

approach resulting from the right viewpoint of a video. Our multi-camera tracking approach 

provides much better performance compared to the mono-camera tracking approach. Tracking 

time increases 20.79% for the first trajectory (doctor), and 6.41% for the second one (patient). 
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(a) 

(b) 
(c ) 

Figure 2-3: (a) The doctor and patient projections from the left view to the right. (b) Patient 

trajectories from mono-view and after merging. (c) Doctor trajectories from mono-view and after 

merging. 

 

Table 2.1: Mono and multi-camera tracking results for the right camera view for a video 

 

 

Table 2.1 presents the tracking results of the proposed approach and mono-camera tracking 

approach resulting from the left and right views of 5 videos (10 people in total). We achieved 

considerably better performance than the mono-camera tracking algorithm of [2.1]. The multi-

camera tracking approach outperforms the mono-camera results for both camera views. For 

the doctor’s trajectory, the most significant improvement is against the right camera 

viewpoint’s result, which is surpassed by 19.67%. In the case of the patient’s trajectory the 

best results (an improvement of 25.5%) are achieved compared to the results from the left 

camera viewpoint. For the person with dementia we achieved a high tracking time, of 91.3%, 

but only 66.92%for the doctor trajectory, which can be attributed to misdetection of the doctor 

from both viewpoints. 

 

 

 

 

 

Approaches Camera view Object 1 (Doctor) Object 2 (Patient) 

Tracking time Tracking time 

Mono-camera tracker  Right 49,67% 86,31% 

Our multi-camera tracker Left and Right 70,45% 92,72% 
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Table 2.2: Tracking results of the proposed approach and mono-camera tracking approach resulting 

from left and right view for 5 videos 

 

Approaches Camera view Object 1 (Doctor) Object 2 (Patient) 

Tracking time Tracking time 

Mono-camera tracker Right 47,24% 85,21% 

Mono-camera tracker  Left 52,76% 65,79% 

Our multi-camera tracker Left and Right 66,92% 91,30% 

 

2.4  Conclusion 

We have presented a novel multi object tracking process for multiple cameras. For each 

camera, tracking by detection is performed. Trajectory similarity is computed using a 

Dynamic Time Warping approach. Afterwards, the association of trajectories takes place as a 

maximum bi-partite graph matching, addressed by the Hungarian algorithm. Finally, the 

merging processes between associated trajectories has taken place with an adaptive weighting 

method.  

 

We evaluate the multi-camera approach in a real-world scenario and compare its results to the 

mono-camera approach. Our method considerably outperforms the mono-camera tracking 

algorithm [2.1], with good occlusion management and providing more complete trajectories 

by recovering additional information, which is not available in a single view. In future work, 

we will modify this algorithm to achieve online processing.  
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 Action Recognition 
 

3.1  3D Localization From Wearable Camera 

 

In this work, we are interested in estimating the position of a patient moving in an apartment 

from a wearable camera (see Fig. 3-1). To achieve this, we first develop a complete 3D 

reconstruction framework to robustly and accurately reconstruct a whole apartment from a 

training video. Then, we propose a localization approach that relies on the 3D model of the 

environment to estimate the position of the camera from a new video. 

 

 
Figure 3-1: 3D Localization From Wearable Camera Problem 

 

3.1.1   Reconstruction of an apartment from a wearable camera 

In D4.3 we presented a 3D reconstruction framework that is able to estimate both the camera 

pose, as well as a sparse 3D point cloud from a few hundred images of a single room. 

However, when the number of images increases, the computational complexity of the 

approach quickly becomes prohibitive. Thus the previously proposed framework can only 

reconstruct a room and not a whole apartment. Here, we are interested in building a globally 

consistent 3D model of an entire apartment.  

 

Our new large-scale 3D reconstruction framework builds upon the framework introduced in 

the previous deliverable. It also deals with videos and thus takes advantage of the temporal 

continuity of the video frames, while the previous framework assumed that the frames where 
unordered. The workflow of the proposed approach is illustrated in Figure 3-2.  
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Figure 3-2: Workflow of the proposed large-scale 3D reconstruction framework 

 

3.1.2   Keyframe Selection 

First of all, our approach selects keyframes among all the video frames by running a Lucas-

Kanade tracker on the frames. It works as follows: 

[1] The first video frame is a keyframe. 

[2] Iterate until the end of the video 

[1] Set next video frame as current frame 

[2] Run the Lucas-Kanade tracker  

[3] If the distance between the 2D points tracked in the previous keyframe and the 2D 

points matched to them in the current frame is higher than a threshold (typically 10% 

of the width of a frame) then set the current frame as a keyframe 

[4] Go to 1 

This keyframe selection allows us to take advantage of the temporal continuity of the video 

frames by tracking features between keyframes instead of simply trying to match features 

between keyframes.  

 

3.1.3   Sub-map Reconstruction 

After having selected keyframes, we define overlapping subsets of consecutive keyframes. 

For each subset of keyframes, we estimate a sub-map, i.e a 3D point cloud as well as the 

camera poses, with a framework similar to the one described in the previous deliverable. The 

workflow of the sub-map reconstruction framework is illustrated in Figure 3-3. The main 

modification with respect to the previous deliverable relies in the modification of the “global 

camera orientation estimation” where we now employ an iterated extended Kalman filter on 

Lie groups (accepted in ICIP 2014). Further details on this sub-map reconstruction framework 
have been submitted to CVPR 2015 and will be available soon. 
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Figure 3-3: Sub-map reconstruction framework 

3.1.4   Relative Similarity Averaging 

Once all the sub-maps have been estimated, we need to align them to obtain a globally 

consistent 3D model. Aligning these sub-maps consists in computing and averaging relative 

3D similarities (scale, rotation and translation) between them.  

To compute the relative similarities, we propose the following approach: 

For each point cloud: 

 Select the 3D points that have a “small ” covariance.  

 Compute a signature. We use a bag of visual words approach and consider the 

histogram as a signature. 

 Find the 100 “closest” point clouds. Here “closest” means w.r.t the L2 distance 
between signatures.  

 Match the 3D point descriptors of each of these point clouds to the 3D points 
descriptors of the current point cloud. 

 Compute the relative 3D similarities between the best 30 point clouds and the 

current point cloud by minimizing the distances between the matched 3D points. 

If two sub-maps are overlapping, i.e. if they share cameras, then we also include 

the distance between these cameras poses in the criterion. In this step, a RANSAC 
algorithm is applied since matches between 3D points usually produces outliers. 

Once that all relative 3D similarities have been computed, we need to average them. To do so, 

we apply the iterated extended Kalman filter on Lie groups (that was accepted in ICIP 2014). 

Unfortunately, this algorithm is not robust to outlier measurements while the relative 3D 

similarities might contain outliers. Indeed, two point clouds representing two places from 

different rooms that have a similar geometry might produce a relative similarity measurement. 

In order to deal with these outliers, we apply a robust approach, still based on the iterated 

extended Kalman filter on Lie groups that was accepted in ACCV 2014. 

As we will see in the next section, this approach is able to efficiently reject outliers, while 
aligning the sub-maps to obtain a globally consistent 3D model.  

 

 

3.1.5   Qualitative Results 

We qualitatively evaluate the performance of our system on a video sequence of 10000 

frames recorded in an apartment. Our framework currently runs in Matlab and took 2.5 hours 
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to process the training video. Even if this is already a reasonable computation time, it could be 

significantly reduced using C/C++. After having applied our automatic framework to the 

video sequence, we obtained a set of aligned sub-maps, with each sub-map containing a 3D 

point cloud and part of the camera trajectory. In order to qualitatively evaluate the result, we 

manually place the estimated camera trajectory from the training video sequence on top of the 

ground plan of the flat (see Figure 3-4). As it can be seen, the superimposed camera trajectory 

is coherent with the ground plan, i.e it trajectory goes into (almost) every room without 

crossing the walls and passes through the doors when going from one room to another. 

 

 
Figure 3-4: Superimposed reconstructed camera trajectory (blue line) with the ground plan of the flat. 

 

3.1.6   Metric Localization from a wearable camera 

In the previous section, we presented a new algorithm to reconstruct a 3D model of an entire 

apartment from a training video. We now propose a localization framework that relies on this 

3D model to estimate the position of the camera from a new video. This new localization 

algorithm employs two different place detectors. The first place detector is based on the 

appearance of the scene, which provides robustness to motion blur and moving objects. The 

second detector is based on the 3D geometry of the model, which makes it highly accurate but 

not always available. The result of both detectors are fused using a novel Rao-Blackwellized 

particle filter on the Lie group SE(3) that relies on a white noise acceleration model to 
produce the final camera trajectory. The proposed framework is presented in Figure 3-5. 
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Figure 3-5: Localization framework 

 

Keyframe Selection 

In order to reduce the number of frames to localize, we perform keyframe selection over the 

video frames to only keep the frames where the person is actually moving. This keyframe 

selection step is the same as the one depicted in the previous section. 

 

SURF points detection 

After having selected keyframes, SURF points are extracted. These points will be used both 
by the appearance based place detector and the 3D based place detector. 

 

Appearance based place detection 

For each keyframe of the 3D model previously reconstructed, we have saved its SURF points, 

a 32x32 miniature as well as its position and orientation w.r.t the 3D point cloud. The aim of 

this module is to exploit the information, that we call the “appearance” of the 3D model, to 

localize each keyframe of the new video.  Here, we do not use the reconstructed 3D point 
cloud. 

 

We now detail how a keyframe K of the new video is localized. 

First of all, a 32x32 miniature is created and compared to the miniatures of the 3D model 

using the L1-norm. Then, the 100 closest keyframes of the 3D model are re-ranked by 
matching their SURF points to those of K using kd-trees and bi-directional matching. 

Finally, from the 10 closest keyframes of the 3D model, a mixture of Gaussian distributions is 

created where the mean of each component is set as the pose of the corresponding keyframe, 

the covariance is defined by hand (each component has the same covariance) and the weight 

is proportional to the number of matches. This mixture of Gaussians will be used by the Rao-
Blackwellized particle filter. 

 

3D based place detection 

The aim of this module is to exploit the reconstructed 3D point cloud to localize each 

keyframe of the new video. 

To do so, for a keyframe K, we first match its SURF points to the SURF points of the 3D 

model. We then apply a PnP algorithm combined with a RANSAC to robustly estimate the 

pose of K. Based on a Gauss-Newton algorithm, the estimated pose is finally refined by 

minimizing the reprojection error of the 3D points in the keyframe. Around the estimated 
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pose, the covariance matrix of the estimated errors is approximated by performing a Laplace-

like approximation. 

To increase the performances of this 3D based detector, the described method is actually 
applied to the point cloud of each sub-map. 

The output of this detector is thus once again a mixture of Gaussian distributions that will be 

used by the Rao-Blackwellized particle filter. 

 

Rao-Blackwellized Particle Filter on SE(3) 

The aim of this module is to fuse the information coming from the appearance-based place 

detector, which is robust to motion blur and moving objects, and the 3D based place detector 

which is highly accurate but not always available, to reliably estimate the camera trajectory. 

At each time instant, a mixture of Gaussian distributions (from the two place detectors) is 

provided to the filter to select the “true” component. To do so, the filter employs 

spatiotemporal a priori information, which states that camera poses should be close to each 

other for two consecutive time instants. We use a white noise acceleration motion model to 

represent this a priori information. 

Consequently, at each time instant, the filter estimates the component of the mixture to select 
as well as the pose of the camera (and its speed). 

The discrete part of the state (the component selection) is sampled while the continuous part 

(camera pose and speed) is solved analytically using an iterated extended Kalman filter on Lie 
groups (ICIP 2014).  

 

Qualitative and quantitative results 

In order to evaluate the proposed localization framework, we recorded several videos in the 

apartment that we previously reconstructed and manually built ground truth trajectories. Then 

we applied the proposed localization framework to estimate camera trajectories. In Figures 3-

6 and 3-7, estimated camera trajectories and ground truth trajectories are represented for two 
sequences. In the following table, the average position error is represented for these videos. 

 Sequence 1 Sequence 2 

Average Position Error (m) 0.54 0.64 

One can see, that for those two videos, the camera trajectory is accurately estimated. The 
current Matlab implementation achieves 1.3 FPS. 
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Figure 3-6: Sequence 1 - Superimposed estimated camera trajectory (blue line) with the ground truth 

(red line). 

 

 
Figure 3-7: Sequence 2 - Superimposed estimated camera trajectory (blue line) with the ground truth 

(red line) 

 

3.1.7   Conclusion and Future Work 

In this work, we first presented a complete 3D reconstruction framework able to robustly and 

accurately reconstruct a whole apartment from a training video. Then, we proposed a 

localization approach that relies on the 3D model of the environment to estimate the position 

of the camera from a new video. We demonstrated, both qualitatively and quantitatively, that 

the proposed localization framework was able to accurately estimate the camera trajectory 

from a new video in an apartment previously reconstructed with the proposed 3D 
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reconstruction framework. As future work, we are interested in cases where the place 

detectors fail, for example when someone puts their hand in front of the camera. 

 

3.2  Object recognition 

3.2.1   Objectives 

For the task of the assessment and life-logging of Alzheimer patients in their Instrumental 

Activities of Daily Living (IADLs), egocentric video analysis has gained strong interest as it 

allows clinicians to monitor patients’ activities and thereby study their condition and its 

evolution and/or progression over time. Recent studies demonstrated how crucial the 
recognition of manipulated objects is for activity recognition under this scenario [3.1, 3.2].  

As described in earlier deliverables D4.1, D4.3, D4.4, visual saliency is an efficient way to 

drive the scene analysis towards areas ‘of interest’ and has become very popular among the 

computer vision community. Manipulated object recognition tasks can greatly benefit from 

visual attention maps both to reduce the computational burden and filter out the most relevant 
information. 

Generally speaking, two types of attention are commonly distinguished in the literature: 

bottom-up or stimulus-driven and top-down attention or goal-driven [3.3, 3.4]. The authors of 

[3.3] define the top-down attention as the voluntary allocation of attention to certain features, 

objects, or regions in space. They also state that attention is not only voluntary directed as 

low-level salient stimuli can also attract attention, even though the subject had no intention to 

attend these stimuli. A recent study [3.5] about how saliency maps are created in the human 

brain, shows that an object captures our attention depending both on its bottom-up saliency 

and top-down control. 

Modelling of human visual attention has been an intensively explored research subject since 

the last quarter of the 20th century and nowadays the majority of saliency computation 

methods are designed from a bottom-up perspective [3.6]. Bottom-up models are stimulus-

driven, mainly based on low-level properties of the scene such as color, gradients orientation, 

motion or even depth. Consequently, bottom-up attention is fast, involuntary and, most likely 
feed-forward [3.6]. 

However, although the literature concerning models of top-down attention is clearly less 

extensive, the introduction of top-down factors (e.g., face, speech and music, camera motion) 

into the modelling of visual attention has provided impressive results in previous works [3.7, 

3.8]. In addition, some attempts in the literature have been made to model both kinds of 

attention for scene understanding in a rather “generic” way. In [3.9] the authors claim that the 

top-down factor can be well explained by the focus in image, as the producer of visual content 

always focuses his camera on the object of interest. Nevertheless, it is difficult to admit this 

hypothesis for expressing the top-down attention of the observer of the content: it is always 
task-driven [3.6].  

More recent works using machine learning approaches to learn top-down behaviours based on 

eye-fixation or annotated salient regions, have proven also to be very useful for static images 

[3.10, 3.11, 3.12] as well as for videos [3.13, 3.14]. Furthermore, with advent of Deep 

Learning Networks (DNN), some novel approaches have been designed in the field object 

recognition, which build class-agnostic object detectors to generate candidate salient 

bounding-boxes which are then labelled by later class-specific object classifiers [3.15, 3.16]. 

However, it seems impossible for us to propose a universal method for prediction of the top-
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down visual attention component, as it is voluntary directed attention and therefore it is 

specific for the task of each visual search. Nevertheless, the prior knowledge about the task 

the observer is supposed to perform, allows extracting semantic clues from the video content 

that ease such a prediction.  

The current state-of the art in computer vision allows for the detection of some categories of 

objects with high confidence. A variety of face or skin detectors have been proposed in the 

last two decades [3.17]. Hence, when modelling top-down attention in a specific visual search 

task, we can use “easily recognizable” semantic elements that are relevant to the specific task 

of the observer and may help to identify the real areas/objects of interest. 

In this work we propose to use domain specific knowledge to predict top-down visual 

attention in the task of recognizing manipulated objects in egocentric video content. In 

particular, our “recognizable elements” (those relevant to the task) are the arms and hands of 

the user wearing the camera and performing the action. Their quantized poses with regard to 

different elementary components of a complex action such as object manipulation will help in 

the definition of the area where the attention of the observer searching for manipulated objects 

will be directed.  

We evaluate our model from two points of view: i) prediction strength of gaze fixations of 

subjects observing the content with the goal of recognition of a manipulated object, and ii) 

performance in the target object recognition by a machine learning approach. 

 

3.2.2   Goal-oriented top-down visual attention model 

Our new top-down model of visual attention prediction in the task of manipulated object 

recognition relies on the detection and segmentation of some objects, considered as 

references, that help locate the actual areas of interest in a scene, namely the objects being 

manipulated. In our proposal, arms/hands are automatically computed for each frame using 
the approach introduced by Fathi et al. [3.18]. 

We propose to build our model as a combination of two distinct sets of features: global and 

local. The former describes the geometric configuration of the segmented arms, which are 

clustered into a pre-defined set of states/configurations. This global information is used to 

select one of the components in a mixture model. The second set, concerning the local 

features, is then modelled using the specific distributions corresponding to the selected global 

component.  

 

Defining Global features 

The features we propose are based on the geometry of arms in the camera field of view, which 

is correlated with the manipulated objects’ size and position. An elliptic region in the image 

plane approximates each arm, from the elbow to the hand extremity. Hence an ellipse is first 
fitted to each segmented arm area and, then, several global features are defined, namely: 

 

 Relative location of hands: Two features are extracted that encode the relative location 

of one hand with respect to the other (see Figure 3-8 (a)). To that end, and when taking 

the left hand centre as the origin of coordinates, the vector that joins the origin and the 

right hand is represented by means of its magnitude 𝜌𝑅𝑒𝑙 and phase 𝜑𝑅𝑒𝑙. The 
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magnitude and phase are strong indicators of the objects’ width and holding pose, 

respectively.  

 Left arm orientation and Right arm orientation:  As illustrated in Figure 3-8 (b) the 

orientation of each arm 𝜑𝐿  and 𝜑𝑅 is defined by the angle between principle axis of the 

ellipse and the Y-axis in an image plane. The arms are mostly oriented depending on 

the objects being manipulated, e.g. holding a cup or pouring something (e.g., milk, 
juice) usually present distinguishable arm orientations.  

  Left arm depth and Right arm depth with regard to the camera: an object size is likely 

to be correlated with the “depth” of the arms, i.e. a measure of its closeness to the 

camera. In this work, body-worn cameras do not provide real depth information. A 

trivial approximation of the “depth” of an arm is the minor axis length 𝑑𝐿 and 𝑑𝑅) of 
the fitted ellipse (see Figure 3-8 (c)).  

 

  

 
Figure 3-8 Illustrations of the 6 global features. 1(a): Relative location of hands, 1(b): Left arm 

orientation, 1(c): Left arm depth and Right arm depth with regard to the camera. 

 

 

A vector 𝒈 = (𝜌𝑅𝑒𝑙 , 𝜑𝑅𝑒𝑙 , 𝜑𝐿 , 𝜑𝑅 , 𝑑𝐿 , 𝑑𝑅  ) containing these six geometrical features is computed for 

each image in the training set, and then clustered into 𝐾 global appearance models using k-

means. It is worth noting that Z-score normalization has been performed over the data, in 

order to prevent outweighing features with large range over attributes with small ones [3.19]. 

Figure 3-9 illustrates results in case of 8 clusters in our training dataset. The difference 
between the global appearance states (a) - (h) is easily noticeable. 
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Figure 3-9 Representation of the arm segmentations closest to the centre of 8 global appearance model 

clusters. Each cluster is represented by the sample that is closest to the cluster centre. 

 

Defining Local Features 

Global appearance models define the most common states in which the arms can be found. 

Depending on these models, the zones of interest are different and the saliency computation 

needs to be adapted to. The “local” features we introduce serve for refining the underlying 

saliency distribution in the frame for a given global state. These features are the coordinates 

of a hand centre 𝒄 (or hand centres in case the global state contains two hands). Their 

computation is also based on geometrical considerations.  

 
Figure 3-10 Illustration of the hand centre c computed as the barycentre of the orange box and the key 

points around: xhs the starting position of the hand on the major ellipse axis, and xae the end position 

of the whole arm. 

 

Intuitively, when only the hand appears in the image, the hand centre 𝒄 should be situated 

around the center of mass of the entire segmented image. Similarly, if the whole arm appears 

as in Figure 3-10, the hand centre should be located closer to the extremity of the arm. Looking 

at Figure 3-10, let us define two segments: 𝑥ℎ𝑠 is the segment that joins the beginning of the 

arm (origin of coordinates) with the beginning of the hand, and 𝑥𝑎𝑒 is the full arm-length. We 

have observed that the ratio 𝑑 =
𝑥ℎ𝑠

𝑥𝑎𝑒
 is closely related with the ratio 𝑟 between the minor and 
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major axis of the fitted ellipse. In particular, to establish this relationship, we have randomly 

select some training frames for which we annotated the hands starting points 𝑥ℎ𝑠 over the 

major axis of the ellipse (represented as blue dots in Figure 3-11), and then optimized an 

exponential model as:  

 

𝑑(𝑟) = 𝑎 𝑒𝑏𝑟 

 

where 𝑎 and 𝑏 are the coefficients computed by exponential fitting, 𝑟 is the ratio between 

minor/major axis of the ellipse fitting the segmented arm, and 𝑑(𝑟) gives the ratio between the 

starting points 𝑥ℎ𝑠 of hands on the major ellipse axis and the arm length 𝑥𝑎𝑒 as a function of 𝑟. 

The results of this optimization are shown (red line in Figure 3-11).  

 

 
Figure 3-11 Graph representing the ratio between hands beginning and arm length depending on the 

minor/major axis lengths of the ellipse fitting the segmented arms. Blue dots correspond to the values 
manually annotated, red line to the fitting exponential model 

 

Finally, the two-dimensional center 𝒄 coordinates are then defined as the center of mass of the 

segmented area that lies between the starting point of the hand and the end of the arm (the 

center of the orange box in Figure 3-10. The computed “hand centre” 𝒄 coordinates will  
generate the hand-related saliency map.  

 

A Probabilistic Model for Top-down Visual Attention Prediction 

As a human observer would be attracted to the objects manipulated by hands, we consider the 

joint locations of arms/hands and objects as predictors of top-down visual attention. Hence, 

we have developed a probabilistic model for top-down visual attention that incorporates both 

global and local features distributions. The graphical model of our approach for Top-Down 
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visual attention is shown in Figure 3-12. Given a corpus of 𝐷 training images, the objective is 

to learn the process that chooses a set of 𝑁 salient spatial locations 𝒙 within each frame. 

 

 
Figure 3-12 Graphical model of our approach Top-down visual attention modelling with manipulated 

objects. Nodes represent random variables (observed-shaded, latent-unshaded), edges show 

dependencies among variables, and boxes refer to different instances of the same variable. 

 

Let us first introduce a simplified model considering just the set of 𝐾 global arm 

configurations 𝒛 = {𝑧1, … , 𝑧𝐾}, and their relationship with the global features 𝒈. Given 𝒛, the 
probability density function (pdf) of the vector 𝒈  can be modelled as a Gaussian mixture.  

 

𝑝(𝒈|𝒛) = ∑ 𝑤𝑘𝑝(𝒈|𝑧𝑘)

𝐾

𝑘=1

 

 

Here 𝐾 is the number of clusters defined in section 3.3.2.1, and remains an open parameter in 

our model. The weights 𝑤𝑘 stand for the prior probabilities of the components in the mixture 

and are derived from the results of the clustering stage, by computing the proportion of 

training images assigned to each cluster. In the Gaussian formulation, the likelihood of the 

global features given the component is defined as: 

 

𝑝(𝒈|𝑧𝑘) = 𝑁(𝒈; 𝜇𝑘
𝑧 , Σk

𝑧) 

 

with mean vector 𝜇𝑘
𝑧 and covariance matrix Σk

𝑧. Both parameters are obtained from the results 

of the clustering stage, by computing the parameters of the Gaussian distribution over the set 

of samples assigned to each cluster (global configuration). 

 

After introducing our simplified model for global features, let us extend it by considering the 

distributions that depend on local features. For each elementary arms model 𝑧𝑘, we introduce 

the pdf of each hand 𝑝(ℎ|𝑧𝑘), where ℎ is an index variable with two possible values ℎ = {0,1} 

for the left and right hands respectively. Once the arms model 𝑧𝑘 is given, the local centre 
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coordinates of the selected hand ℎ are also probabilistically modelled by the distribution 

𝑝(𝒄|ℎ, 𝑧𝑘).  

Finally, the likelihood of a point 𝒙 belonging to the area of interest is expressed by the 

conditional distribution 𝑝(𝒙|ℎ, 𝒄, 𝑧𝑘). This distribution models the probability of a pixel to 

belong to the object being manipulated given the current geometric configuration of arms and 

hands. It is easy to note that the relative object location and pose is different for various global 

configurations such as the ones shown in Figure 3-9. 

 

Putting everything together, we can define the partial the model involving the local features: 

 

𝑝(𝒙|ℎ, 𝒄, 𝑧𝑘) = 𝑝(ℎ|𝑧𝑘)𝑝(𝒄|ℎ, 𝑧𝑘)𝑝(𝒙|ℎ, 𝒄, 𝑧𝑘) 

 

Next, we can define the selected distributions for the local variables as: 

 The pdf 𝑝(ℎ|𝑧𝑘) is given by an experimental discrete distribution (𝑝(ℎ = 𝑗|𝑧𝑘), 𝑗 = 0,1) 

 The hand centre 𝒄 follows a Gaussian distribution 𝑝(𝒄|ℎ = 𝑗, 𝑧𝑘) = 𝑁(𝒄;  𝜇𝑘
𝑐 , Σk

𝑐) 

 The experimental pdf 𝑝(𝒙|ℎ = 𝑗, 𝒄, 𝑧𝑘) is computed also on training set by 
superimposing all left and right hands from images belonging to the cluster 𝑧𝑘.  

 

The first two pdfs are simply learned by computing their parameters using samples on the 

training set (see Section 3.3.2.1 for the details). For the third distribution 𝑝(𝒙|ℎ = 𝑗, 𝒄, 𝑧𝑘), it 

becomes necessary to first crop images by selecting a square region around the hand centre, 

and then superimpose and accumulate all images belonging to the same global component. 

The resulting accumulated map for each hand and global configuration is then normalized to 

sum to one over spatial locations, so as to become a pdf.  

 

In order to compute the saliency map of a particular video frame, the learned distribution is 

shifted to the hand centre in the frame. Figure 3-13 shows different examples of these 

distributions for left and right hands, and given five global appearance models. Finally, 

integrating the distributions of global and local features, the salience value of a pixel 𝒙 is 

defined as its likelihood over the proposed model for saliency: 

 

𝑆(𝑥) = 𝑝(𝒙, 𝒈) 

 

𝑆(𝑥) = ∑ 𝑤𝑘𝑝(𝒈|𝑧𝑘)

𝐾

𝑘=1

𝑝(𝒙|𝑧𝑘)  

 

𝑆(𝑥) = ∑ 𝑤𝑘𝑝(𝒈|𝑧𝑘)

𝐾

𝑘=1

∑ 𝑝(ℎ = 𝑗|𝑧𝑘)𝑝(𝒄|ℎ = 𝑗, 𝑧𝑘)𝑝(𝒙|ℎ = 𝑗, 𝒄, 𝑧𝑘)

1

𝑗=0
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Let us note that the model in the latter equation allows us to compute the saliency even in the 

case where one of the arms is absent by simply considering the corresponding probabilities 
𝑝(ℎ = 0|𝑧𝑘) or 𝑝(ℎ = 1|𝑧𝑘) as zero.   

 

To summarize, we have developed a probabilistic model that explains how salient pixels are 

chosen based on hands/arms configuration and the relative expected location of the object 
being manipulated within each geometric arrangement. 

 

 

Figure 3-13 Five examples of the obtained experimental distributions p(𝐱|h = j, 𝐜, zk). Left column: 
arm segmentation closest to cluster, Middle column: left hand distribution, Right column: right hand 

distribution. 
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3.2.3   Experiments and results 

We present the dataset and provide a whole description of the different experimental set-ups 

for the comparison of our probabilistic top-down saliency model against other saliency 
approaches. We also assess its contribution into manipulated object recognition performances.  

 

Dataset description 

The GTEA dataset we work on was introduced in [3.18]. It is a publicly available database of 

egocentric videos of 4 subjects performing 7 types of instrumental activities of daily living. 

The segmentations of arms and objects of interest are provided for 17 videos, a subset of 

which we use for training our distributions. The frames were annotated with the objects of 

interest but we manually extend this annotation by drawing bounding boxes on them. The 

bounding boxes provide the “ground truth” results that could be reached with an “ideal” 

rectangular salient area. We have split the dataset into training and test sets of videos in such a 

manner as to even the number of samples of each category in both sets. Let us note that this 

set-up differs from and is more challenging than the original one proposed in [3.18], where 

the authors used videos from 3 subjects to train their system and the last one for evaluation. 

 

Selected saliency models for comparison 

The following saliency prediction models were selected for comparison due to their 
popularity or specific relation with the egocentric video. 

 

 The well-known reference model developed by Itti [3.20]. We will denote it as “ITTI” 
in the follow up of the paper. 

 

 The graph-based visual saliency model developed by Harel [3.21]. It will now be 
referred to by the acronym “GBVS”. 

 

 The spatio-temporal-geometric model presented in [3.22] since it has been specifically 

developed for saliency extraction in egocentric videos and presents the state-of-the art 

in saliency-based object recognition in this content [3.2]. This model will be referred 
as “STG”. 

 

 Visual Attention maps built on gaze fixations by reference Wooding's method [3.23]: 

the fovea projection for each fixation is modelled with a Gaussian of two visual 
degrees spread and resulting multi-Gaussian surface is normalized.  

 

Figure 3-14 contains computed saliency maps for a randomly selected frame (a). We also 

display the manually annotated bounding box of the manipulated object (b), as well as the 
automatically extracted segmentation mask (c) 
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Figure 3-14 Saliency models selected for comparison. 

 

Influence of the number of clusters in the global appearance model 

The number of clusters 𝐾 introduced in Section 3.3.2.1 is an open parameter in our model. We 

have performed an optimization of the target mean Average Precision (mAP) of object 

recognition in regard to this parameter using the paradigm introduced in Section 3.3.3.5 Table 

3.1 below illustrates the influence of the number of clusters 𝐾 on the target mAP. Having too 

few clusters might lead to a lack of information about certain arm models while having too 

many leads to poorly populated clusters.  We found an optimum value at 𝐾 = 50. For the rest 

of the experiments the saliency model referred as “Ours” corresponds to the methodology 

presented in Section 3.3.2.3 with K=50 clusters. 

 

 Table 3.1 Validation of the number of global appearance models K 

 

 K=20 K=50 K=100 

mAP 0.306 0.353 0.342 

 

Psycho-visual evaluation of proposed saliency model 

In this section we assess the capacity of our top-down model to predict human visual attention 

in the task - a guided psycho-visual experiment. The saliency models presented in Section 

3.3.3.2 were also assessed for the sake of comparison. 
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The psycho-visual experiment was designed for recording gaze fixations of subjects who 

observed the egocentric video with the task of recognition of manipulated objects. For this 

experiment 31 participants have been gathered, 10 women and 21 men. They were instructed 

to look at a manipulated object in videos. Each video was watched by 15 subjects or more. 

Gaze positions have been recorded with a HS-VET 250Hz Cambridge Research Systems Ltd 

eye-tracker. The experiment conditions and the experiment room were compliant with the 

recommendation ITU-R BT.500-11 [3.24]. Videos were displayed on a 23 inch LCD monitor 

with a native resolution of 960 × 540 pixels. To avoid image distortions, videos were not 

resized to screen resolution, but instead a grey frame was inserted around the displayed video. 

In order to avoid the visual fatigue, the duration of observation was not longer than 15 

minutes for each subject. Automatically predicted saliency maps can be compared to human 

gaze fixation with the help of dedicated metrics. From [3.26] and previous work [3.27], we 

retained the Normalized Scan Path (NSS) as the most frequently used and suitable for the 
comparison of saliency maps with human eye fixations: 

 

𝑁𝑆𝑆(𝑝) =
𝑆𝑀(𝑝) − 𝜇𝑆𝑀

𝜎𝑆𝑀

 

 

where 𝑝 is the location of one fixation and 𝑆𝑀 is the saliency map with its mean 𝜇𝑆𝑀 and 

standard deviation 𝜎𝑆𝑀. The final NSS score is given by the average of the 𝑁𝑆𝑆(𝑝) values for 
all 𝑁 eye fixations. 

 

We measured the similarity of recorded eye fixations from the experiment with automatically 

generated saliency maps from our top-down probabilistic model and the ones presented in 

section 3.3.3.2. In total 8244 frames were compared for each saliency model and the final 

mean scores with standard deviations are presented in Table 3.2. Proposed top-down 

probabilistic model corresponds better to real human eye fixations than the other state-of-the-

art saliency models. Since the standard deviation are high, we computed the p-values to back 

up the hypothesis that the NSS mean using our top down approach is significantly higher than 

with the other saliency models. At the 1% significance level, the data do provide sufficient 

evidence to conclude that the mean NSS score using our top-down saliency is greater than the 

mean obtained using other saliency models. 

 

It is however important to underline that the GVBS and ITTI models are bottom-up and were 
not designed for a task of recognition of specific objects of interest.  

 

Table 3.2 NSS mean scores (with standard deviations) between human points and different saliency 
map models. 

 

 ITTI GBVS STG OURS 

Mean NSS score 1.05 ± 0.7269 1.29 ± 0.6551 1.52 ± 0.249 𝟐. 𝟐𝟖 ± 1.2226 
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Object recognition performances 

The ultimate goal of developing a model of top-down visual saliency is in the task of 

manipulated object recognition. Hence, we first present the object recognition approach with 

saliency-based psycho-visual weighting of features. This approach, combined with the 

proposed saliency model, is then compared to other state of the art paradigms for object 
recognition. We also benchmark it with other saliency models presented in section 3.3.3.2 

 

Saliency-based object recognition approach 

In this study we used the saliency-based object recognition method presented in [3.2]. That 

approach is based on the well-known Bag-of-Visual Words (BoVW) paradigm [3.27, 3.28]. It 

uses dense SURF descriptors [3.29] and the BoVW is built when weighting each quantized 

features the estimation of the underlying predicted saliency value. Once each image is 

represented by its weighted histogram of visual words, an SVM classifier [3.30] is used with a 

𝜒2 kernel. Posterior probabilistic estimates for the occurrence of the object of class 𝐶 in the 

frame 𝑡 are obtained using Platt's approximation [3.31]. For the sake of comparison, we also 

define our baseline model as the one without any saliency maps. This is a conventional 

BoVW approach with dense sampling of features on the whole frame. The latter will be 

referred as “Simple BoVW” in the rest of the paper.  For the computation of BoVWs, we use 

a dictionary size of 4000 visual words.  Finally, we define our “ground truth” model as the 

one where descriptors were extracted only in manually annotated bounding boxes. We 
consider these bounding boxes as “ideal” saliency maps, referred to as “BoVW with BB”. 

 

Comparing with other object recognition approaches and saliency models 

Our method outperforms two famous paradigms for object recognition:  

 the base-line (“simple”) BoVW 

 the DPM model [3.32]. It achieves absolute improvements of 10.7% over BoVW and 
8.6% over DPM. 

Figure 3-15 illustrates the results. Here the “ideal” BoVW with BB is added for the upper 

bound estimate. As can be seen from the mAP score (last set of bars), our method outperforms 

the others for this kind of video content, and achieves performance close  to the “ideal” case.  

 

 

 



FP7-288199 

D4.5 – Activity Monitoring and Lifelogging v2                                                                                      

 
Page 38 

 

                                                                                                                  

                                                                                             

 
Figure 3-15 Object recognition performances between different paradigms. The results are given in 

average precision per category and averaged. 

 

In their paper, Fathi et al. [3.18] use a different object recognition method based on the 

segmented zones. We also computed object recognition accuracy in our test set in the same 

way it was computed by Fathi, i.e., measuring how well the three highest score detections in 

each frame match ground-truth labelled objects. The average precision we obtained was 

slightly higher than Fathi's ,but the comparison is unfair since, as we already mentioned, we 
have evaluated our detectors under a more challenging set-up with less training data. 

 

We also compare our model with those described in section 3.3.3.2 using the same object 

recognition approach. Results for per-category and averaged object recognition are displayed 
in Figure 3-16 in terms of AP.  

Compared to the ITTI and GBVS models, our model performs better for almost all categories. 

These bottom-up saliency models are stimuli-driven, make use of spatial contrast and were 
not designed to model a top-down, intentional attention component.  

The performances of bottom-up STG saliency maps, developed for video were also beaten for 

almost all categories. This is due to the overestimation by STG of the spread of Gaussian 
expressing central bias hypothesis on visual attention.  

 

It also achieves slightly better performances than the ones provided by Human Visual 

Attention maps [3.23]. It is indeed better for some categories since as illustrated in Figure 

3-14(d), the visual attention maps are perfectly located but sometimes do not cover the objects 

of interest enough, contrarily to our model, see Figure 3-14(h) for an example. Student’s t-
tests with significance level of 0.05 were used to verify the improvements.  
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Figure 3-16 Object recognition performances between different saliency models applied to the 
saliency weighted BoVW paradigm. The results are given in AP per category and averaged. 

 

3.2.4   Conclusions 

In the continuation of the work introduced in previous deliverables, we have proposed a new 

top-down probabilistic visual saliency model for the task of recognizing manipulated objects 

in egocentric video. It is based on global and local features and uses domain knowledge, i.e. 

the fact that hands interact with the object of interest. The model predicts well human 

attention in a task-driven psycho-visual experiment and shows better performances than 

several bottom-up models widely used in literature, both in terms of comparison with human 

gaze fixations and target performance in the manipulated object recognition task. Although 

the model has been developed for the specific case of egocentric video content and the task of 

manipulated object recognition, the idea behind the method is generic. In top-down visual 

attention modelling we need to use domain knowledge, contextual information to predict 

human visual attention. The latter is a complex combination of bottom-up, stimuli driven, and 

top-down, components. In the perspective of the present research, the combination of bottom-

up and top-down prediction and spatio-temporal evolution of visual saliency in a video scene 

is envisaged with a target application to object and action recognition. 

Future plans include obtaining models for the Dem@Care CHUN and DCU datasets and 

implementing a full study of the method’s performance. Later on, this new model will be 

implemented in the final prototype. We are also studying a way to enhance performances by 
optimizing the parameters of the model using expectation/maximization. 
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 Activity Monitoring 

4.1  Introduction 

The work on activity monitoring has continued with improvements on the methods being 

developed for activity localization and recognition. The ultimate goal is to achieve accurate 

recognition of activities of daily living, so that visual monitoring can take place 

autonomously, relieving the formal and informal caregivers of a large part of their daily 

obligations. Activity localization methods have been developed in order to isolate activities of 

interest in videos of long duration, such as those recorded during daily life monitoring. 

Subsequent recognition was shown to be accurate, demonstrating the correct spatiotemporal 
localization of activities.  

 

 

 

 

 
Figure 4-1 Dem@Care lab experiments: From left to right and top to bottom Dem@Care1: Eat Snack, 

Enter Room, HandShake, Read Paper, Dem@Care2: Serve Beverage, Start Phonecall, Drink Beverage 

and HandShake, Dem@Care3: Prepare Drug Box, Prepare Drink, Turn On Radio, Water Plant. 
Dem@Care4: Answer phone, Prepare Drug Box, Prepare Hot Tea, Establish Account Balance. 
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Figure 4-2 Dem@Care home experiments: From left to right and top to bottom Dem@Home1:Wash 

Dishes, Prepare Meal, Eat. Dem@Home2:Sit on couch, Open fridge, kitchen activity. 

 

This work was further refined in several manners: (1) new real world data was collected in the 

lab environment in the premises of the Greek Association for Alzheimer’s and Related 

Disorders (GAADRD) and two smart home environments that setup on real MCI patients, as 

we can see in Figure 4-1 and Figure 4-2 respectively, on which experiments took place for 

activity recognition accuracy.  

 

The activity localization and recognition methods developed within Dem@Care were tested 

on this data. (2) In parallel, new methods were developed to increase the speed of activity 

recognition using RGB and Depth video frame, ultimately aiming at a real time detection and 

recognition system. (3) In order to generalize the applicability of the proposed approach, a 

novel method for handling multiple camera motion planes is introduced, leading to better 
activity recognition results due to the improved camera motion compensation.  

 

4.1.1   Objectives 

The objectives of our work have been to further expand our activity localization and 

recognition framework, to be able to deal with more challenging videos. The goal is to 

provide a method that can operate more quickly (eventually aiming at near real time 

performance), to examine its operation on new benchmark videos in real world conditions and 

to expand our approach to be able to work with moving camera data. More specifically, in this 

deliverable we present: 

 Improvement and expansion of the camera motion compensation method for spatial 
localization and activity recognition. 

 Speeded up activity recognition using computationally efficient motion estimation. 

 Collection of new RGB-D data in the Dem@Lab and Dem@Home installation for 
activity localization and recognition in real world conditions. 
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4.1.2   Description of the method 

 

Camera Motion Compensation for Improved Activity Recognition 

The superpixels-based [4.1] method, previously described in D4.4 and presented in [4.8], 

which produced multiple homographies corresponding to the camera motion at multiple 

depths, is further improved and tested on benchmark datasets to demonstrate its efficacy and 

usefulness. Each video frame is segmented into superpixels, which are used to estimate a 

global homography between two image frames. Bad matches are eliminated from this 

homography via the application of RANSAC. Local homographies are then estimated 

between tracked interest points in frame t and their re-projections in frame t+1, using the 

previously estimated global homography. The resulting local homographies are employed for 

motion compensation, leading to “motion planes”, containing pixels with the same local 

camera motion but a different appearance (as they correspond to different superpixels). 

Experiments with benchmark datasets, such as the challenging UCF videos, containing real-

world recordings of sports events with a moving camera, demonstrate the effectiveness of this 

method. The figure below contains several sample frames where the moving person is 

detected accurately, despite the camera motion. It should be noted that the UCF dataset 

contains ground truth, depicted in the frames by the green rectangle, so we can quantify the 

accuracy of our method. Indeed, the mean Intersection over Union (IoU) for this dataset is 

56.2%, compared to 39.9% for the current state of the art [4.2]. 

 

   

   
Figure 4-3 Moving person detection in videos recorded with a moving camera. The green boxes 

denote the ground truth and the red boxes the detected people using our multiple homographies 

approach. 
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Speeded Up Activity Recognition 

As the recognition of activities of daily living, and activities in general, is needed in more and 

more applications, we propose an improvement upon our existing activity recognition scheme 

by replacing the computationally costly optical flow estimation with simpler, but faster, block 

matching. This work was applied in several activities of daily living action datasets, including 

Dem@Care recordings, presented in [4.9] and extended in [4.10]. Block matching is applied 

to the video, leading to a sparse motion field: in order to achieve the most accurate motion 

estimation results, we apply Full Search block matching, however we also apply a termination 

criterion using a threshold as in PMVFAST. This leads to accurate motion estimates, with a 

lower computational burden than full search. At the same time, the motion estimate avoids 

getting trapped in local minima, due to the use of the termination criterion. The resulting 

motion vectors are used to estimate Motion Bondary Activity Areas (MBAAs) and sample 

dense interest points in them, around which multi-scale HOG and HOF descriptors are 

estimated. The resulting feature vectors are described by a GMM model, followed by Fisher 

encoding, to be incorporated in an SVM-based recognition scheme. 

Experiments took place with benchmark datasets, namely the University of Rochester 

Activities of Daily Living (URADL) videos, as well as video data collected for the purposes 

of the Dem@Care project in a lab environment, at CHUN in Nice, France, and at GAADRD 

in Thessaloniki, Greece. We compared the results of using block-matching for motion 

estimation with the results using variants of optical flow as in the SoA, within a SoA activity 

recognition framework. Table 4.1 below shows that the proposed method indeed succeeds in 

achieving SoA accuracy at a lower computational cost. Tests took place with the video data at 

several resolutions, for an in-depth examination of the effect of resolution on the block 

matching motion estimation accuracy and the corresponding activity recognition accuracy. 
For reasons of space, we only present results for a resolution of 640x480 in this work. 

 

Table 4.1 Activity Recognition Accuracy for 640x480 resolution, with block matching speedup 

 

Motion 

estimation  

URADL (%) CHUN (%) Dem@Care1 (%) 

Accuracy Speedup Accuracy Speedup Accuracy speedup 

Dual TV-L1 

[4.3] 
90.0 

 

3x(original 

video was 
1280x720) 

98.8 1x 83.3 1x 

VarFlow [4.4] 88.0 9.8x 95.4 2.2x 82.1 1.6x 

Block Matching 

(FS) 
88.7 38.0x 97.3 6.5x 79.9 4.1x 

Block Matching 

(DS) 
88.7 39.2x 97.0 13.4x 81.8 4.3x 

 

Appearance and Depth for Rapid Human Activity Recognition in Real Applications 

A novel technique for activity localization and recognition from color-depth sequences 

recorded with the Kinect sensor, specifically tailored for the recognition of Activities of Daily 

Living (ADLs), was presented in [4.7]. Comparative analysis with SoA [4.5, 4.6] on three 

challenging ADL datasets indicates that our algorithm is very appropriate for real life 
scenarios as it achieves SoA accuracy while performing 10-20 times faster.   
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Our RGB-D video processing framework consists of four stages (Fig.4-2): i) the depth image 

is refined in order to fill the missing values produced by the sensor. ii) Activity is detected on 

a grid of Spatio-Temporal Activity Cells (STACs) applied throughout the video sequence. iii) 

Activity Representation takes place by extracting features from the 3D volume comprised of 

all STACs that contain activity, iv)  the features are encoded with Fisher Vectors of fixed size 

and Activity Recognition is implemented with a SVM classifier. 

 

 
Figure 4-2. Overview of our Activity Localization and Recognition solution: (from left to right) a) 

depth frame refinement corrects noisy depth values. b) Adaptive background modelling uses HOG and 

HoD to separate “active” from “inactive” STACs. c) HOG, HOSNP and 3D trajectories are 
accumulated over time to represent human activities. d) Fisher encoding over the whole video trains a 

multiclass SVM model. 

 

Experiments took place on three Dem@Care datasets (i.e. Dem@Care1, Dem@Care2, 

Dem@Care3) of elderly people performing ADLs, available for benchmark purposes upon 

request. The 640x480 videos of these datasets contain a variety of activities (e.g. Drink 

Beverage, Eat Snack, Talk to Visitor, Start Phonecall, End Phonecall, Prepare Hot Tea, Read 

Article, etc) and a great deal of anthropometric differences between subjects. Moreover, each 

dataset is recorded in a different environment at a unique sampling rate. 

 

Results demonstrate that our method achieves accuracy that is highly competitive to SoA 

algorithms [4.5, 4.6] that make use of Optical Flow, while maintaining a very low 

computational cost. More specifically, the proposed method resulted in a -0.6% accuracy 

compared to SoA for D1 while performing 14.8 times faster. Similarly, a -3.3% accuracy 

deficit from SoA was reported for D2 with a 11.8 faster computation, and lastly, our 
algorithm outperformed SoA on D3 (+1.2% accuracy) while performing 21.4 times faster. 

 

Further analysis exposes the value of the descriptors chosen for activity representation. 

Activity Recognition was carried out with different combinations of descriptors and as shown 

in Table 4.2. The combination of HOG and HOSNP significantly increases the mean 

accuracy, demonstrating that these descriptors incorporate different aspects of the video data. 

Lastly, the concatenation of 3D trajectories boosts the accuracy even further, as more motion 

information is introduced to the final descriptor. 
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Table 4.2: Average Accuracy of the proposed method for different combinations of descriptors and 

average accuracy of SoA methods[1,2] 

 

Dataset 
 

HOG HOSNP 
HOG+HOS

NP 
HOG+HOSNP+3

DTraj 
[1] [2] 

Dem@Car
e1 

Av. 
Acc 

70.2% 81.4% 85.3% 
89.6% 85.1% 90.2% 

Speed
up 

x14.8 
x2.2 x1 

Dem@Car
e2 

Av. 
Acc 

66.9% 69.9% 75.0% 
79.9% 83.2% 79.9% 

Speed
up 

x11.8 
x2.3 x1 

Dem@Car
e3 

Av. 
Acc 

80.7% 79.1% 88.6% 
94.5% 93.3% 91.7% 

Speed
up 

x21.4 
x3.9 x1 

 

Activity Detection and Isolated Activity Recognition for new GAADRD Dem@Lab 

recordings 

 

The activity recognition method described in D4.4 and earlier deliverables is tested on new 

Dem@Lab recordings that took place in the GAADRD premises in Thessaloniki, Greece. The 

resulting activity recognition results are referred to as “isolated activity recognition” as each 

video segment contains only one of the activities of interest. The performance of activity 

detection was also tested on this dataset and shown to lead to reliable activity recognition 

results on videos of a long duration. In particular, the new recordings involved 25 patients 

suffering from MCI (Mild Cognitive Impairment) who were asked to carry out the following 

activities: answer phone, establish account balance, leave room, prepare drug box, prepare hot 

tea, read article, turn on radio, water plant. In Table 4.3, Table 4.4, Table 4.5 and Table 4.6, we 

see that most activities achieve high accuracy rates using the HOGHOF+Traj and Fisher 

framework to represent them.  

 

 Table 4.3 Isolated activity recognition for Dem@Care1 

 

 

CU DB EP ER ES HS PS RP SB SP TV

CU 0,853 0,029 0,059 0,029 0,029

DB 0,02 0,939 0,041

EP 0,031 0,844 0,031 0,094

ER 1

ES 0,244 0,022 0,711 0,022

HS 0,906 0,094

PS 0,029 0,086 0,714 0,171

RP 0,031 0,031 0,938

SB 0,029 0,059 0,912

SP 0,061 0,061 0,879

TV 1

AA 0,881455
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Table 4.4 Isolated activity recognition for Dem@Care3 

 

  AP EAB PDB PHT RA TOR WP 

Phone 96,00%         4,00%   

Account 8,33% 75,00% 16,67%         

Drug     95,24%       4,76% 

Tea       92,00% 4,00% 4,00%   

Read         95,45%   4,55% 

Radio           100,00%   

Plant         10,00%   90,00% 

AvAcc 91,96%             

 

Table 4.5 Isolated activity recognition for Dem@Care4 

 

  
AP EAB PDB PHT 

Phone 
98,41%   15,87%   

Account 

  100,00%     

Drug 
16,67%   93,33% 5,00% 

Tea 
16,13%     98,39% 

AvAcc 97,53%       

 

Table 4.6 Isolated activity recognition for Dem@Home1 

 

  Drink/Eat PrepareMeal UseFridge WashDishes 

Drink Eat 96,30% 1,20% 1,00% 1,50% 

PrepareMeal 5,20% 93,00% 

 

1,80% 

UseFridge 1,60% 

 

98,40% 

 WashDishes 8,80% 

  

91,20% 

AvAcc 94,70%       

 

After activity detection in videos of a long duration, recognition takes place using the 

Statistical Sequential Boundary Detection (SSBD) method described in D4.4. As we can see 

from Table 4.7, the detection and recognition of activities in long duration videos leads to 

lower recognition accuracies, originating from errors in the detection of activity boundaries. 

Nonetheless, initial results are quite accurate, and encouraging for future work and 
improvements upon the method. 

 



FP7-288199 

D4.5 – Activity Monitoring and Lifelogging v2                                                                                      

 
Page 49 

 

                                                                                                                  

                                                                                             

Table 4.7 Activity detection for the new Dem@Lab and Dem@Home datasets 

Datasets Recall Precision 

Dem@Care1 60.78% n/a 

Dem@Care3 80.89% 44.36% 

Dem@Care4 71.47% 55.16% 

Dem@Home1 63.25% 2.51% 

Dem@Home2 91.33% 3.4% 

 

4.1.3   Discussion and results 

We see in the previous sections that the proposed activity recognition method for moving 

camera leads to accurate results on benchmark datasets. This method is expected to provide 

more reliable results in the case where multiple homographies can indeed be detected in a 

scene, i.e., when the scene contains various depths, where the camera motion appears to be 
different in different regions.  

 

We present a method for speeding up the activity recognition by replacing its most 

computationally costly component, namely the optical flow estimation, with block matching. 

Block based matching for motion estimation is quite an old method, which however is shown 

to lead to accurate results while achieving faster activity recognition. In theory even faster 

activity recognition could be achieved, via the elimination of false alarm motion estimates, 

which led to many short length trajectories that could be eliminated.  

 

Activity recognition after detection using the SSBD is shown to lead to accurate results, 

which can be improved on several levels. Adequate amounts of training data, where the 

activities of interest are at least partly visible, are required to ensure better accuracy.  

 

4.1.4   Conclusions 

We have further refined and expanded our methods for activity detection and recognition. 

Improved speed is achieved with the use of block-based matching and, as noted above, has 

room for improvement for even better speedups. Moving camera results tested on benchmark 

datasets led to accurate spatial localization of actors in a scene, as comparisons with ground 

truth data showed. Future work includes refinements of the activity descriptor and recognition 

method, as well as the activity detection approach used, for higher accuracy in long duration 

videos. Furthermore, options for improving activity detection and recognition without loss in 

performance will be investigated. Testing will continue on real world data, obtained from 
recordings for the Dem@Care project. 

 

4.2  References 

 

[4.1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and 

Sabine Susstrunk, “SLIC superpixels compared to state-of-the-art superpixel methods,” IEEE 

Trans. on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274–2282, 2012. 



FP7-288199 

D4.5 – Activity Monitoring and Lifelogging v2                                                                                      

 
Page 50 

 

                                                                                                                  

                                                                                             

[4.2] Shugao Ma, Jianming Zhang, Nazli Ikizler-Cinbis, and Stan Sclaroff, “Action 

recognition and localization by hierarchical space-time segments,” in Int’l Conf. on Computer 
Vision. IEEE, 2013, pp. 2744–2751.  

[4.3] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime TV-   L1 

optical flow,” Pattern Recognition, pp. 214–223, 2007. 

 [4.4] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnorr, “Variational optical 

flow computation in real time,” IEEE Trans. on Image Processing, vol. 14, no. 5, pp. 608–

615, 2005. 

[4.5] K. Avgerinakis, A. Briassouli, and I. Kompatsiaris. Rexognition of activities of daily 

living for smart home environments. In 9th International Conference on Intelligent 

Environments (IE2013), 2013. 

[4.6] H. Wang and C. Schmid. Action recognition with improved trajectories. In Computer 
Vision ( ICCV), 2013 IEEE International Conference on, pages 2087-2090, 2012. 

[4.7] S. Tachos, K. Avgerinakis, A. Briassouli, I. Kompatsiaris, "Appearance and Depth for 

Rapid Human Activity Recogntion in Real Applications", British Machine Vision Conference 
(BMVC), Sep. 2015 

[4.8] K. Avgerinakis, K. Adam, A. Briassouli, Y. Kompatsiaris, "Moving camera human 

activity localization and recognition with motionplanes and multiple homographies", IEEE 
International Conference on Image Processing (ICIP), Quebec city, Canada, Sep. 2015. 

[4.9] S. Poularakis, K. Avgerinakis, A. Briassouli, Y. Kompatsiaris, "Computationally 

efficient recognition of activities of daily living", IEEE International Conference on Image 
Processing (ICIP), Quebec city, Canada, Sep. 2015. 

[4.10] S. Poularakis, K.  Avgerinakis, A. Briassouli and I. Kompatsiaris, “Efficient 

Recognition and Coding of Activities of Daily Living”, to be submitted. 



FP7-288199 

D4.5 – Activity Monitoring and Lifelogging v2                                                                                      

 
Page 51 

 

                                                                                                                  

                                                                                             

 Lifelogging 

5.1  Introduction 

In the context of Dem@Care, the purpose of lifelogging is to facilitate reminiscence therapy 

and to discover life patterns in longitudinal data. For the clinician and/or the PwD we 

designed an image browser, where they can review life narratives captured by lifelogging 

devices. Most applications of lifelogs benefit from automatically structuring them into 

discrete events. The challenges of effective structuring, searching and browsing of a lifelog in 

order to locate important or significant information has been addressed as a media process 

which is based on 1) the capturing and uploading of sensor data, images or video 2) 

postprocessing of the uploaded data and 3) access to processed data. This has been described 

in detail in [5.1] which presents the lifelog as a repository from which information – events of 
importance -- can be retrieved, which has been the access paradigm for the lifelog. 

 

In [5.2], a method that can automatically segment a collection of lifelog images captured from 

a wearable camera is described. The features used to compare the similarity between images 

were MPEG-7 descriptors, namely colour layout, colour structure, scalable colour and edge 

histogram; similarity scores across adjacent images were calculated using those features. The 

authors used a technique called peak scoring to detect the dissimilarity and some automatic 

threshold methods were applied to determine the boundaries between discrete events. In the 

final step of this process, event boundaries that are too close to each other are merged. 

Following this approach, other researchers apply machine learning techniques such as support 

vector machines (SVM) to train a classifier so as to identify the boundaries between events in 

a sequence of lifelog images. External data from other sensor sources such as accelerometers, 
GPS co-ordinates or metadata, could also be used in the segmentation process. 

 

Once images have been segmented into events, a single image is selected to represent the 

entire event in order to facilitate event queries from users. Several selection methods have 

been investigated including selecting the middle image, selecting the image that is most 

representative, and selecting the image that is most representative but also most different to 

other events. Image quality was also considered as an important criterion in selecting key 

frame images and different image quality measures have been evaluated.  

 

When a lifelog is segmented into events for event-based access, by default we get date and 

time, and perhaps location, as keys by which we can access those events. However, we also 

need to analyse the lifelog content itself and leverage the rich information it contains. A 

standard approach to multimedia access is to build a set of classifiers for a set of pre-defined 

semantic concepts and to train each classifier so that it assigns images from the lifelog, and a 

score for the confidence of that semantic concept’s presence in the image. In [5.3] thresholds 

were applied to determine whether a lifelog image belongs to a concept or not. One of the 

most important statistics for concept detection is the author-calculated average number of 

concepts detected for each event and compared among users.  

While indexing lifelog events by the presence or absence of a set of concepts is useful, [5.4] 

described a way that a user can retrieve events by using queries which are far more 

semantically relevant and which can encapsulate different aspects of an information need, 
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specifically the when, where, who, what aspects. This also allows for similar events to be 

retrieved by computing and ranking the similarity between events. Other lifelogging research 

[5.5] has shown an interest in building ontology of semantic concepts that occur in everyday 

activities and which can be detected in lifelogging image collections. Wang [5.6] used 

Markov chains to model the probability distribution of objects and of semantic concepts 

detected in lifelog image events.  

 

Despite all the research carried out into applications of lifelogging and into post-processing of 

lifelog data, especially visual lifelogs consisting of images from wearable cameras, research 

concentrating on analysis of lifelogs which investigates longitudinal aspects and the causality 
and impact of patterns detected from longitudinal analysis on lifestyle, is not apparent. 

 

5.2  Pattern Discovering in Lifelog Data 

5.2.1   Periodicity Detection 

Researchers in lifelogging are just now starting to realise the potential offered by aggregated 

lifelogs that bring together data from multiple sensors, for a single individual. Current 

research into lifelogging does not fully exploit temporal relationships when dealing with data 

[5.7]. In [5.8] time series analysis methods were used to study chronologically presented 

lifelogging images. The authors concluded that DFA (Detrended Fluctuation Analysis) shows 

that lifelogging data is not a random walk, but is closer to a time series with a cyclic 

fluctuation. The work presented in this paper builds upon this finding. Detecting patterns of 

periodicity would give huge insights and reveal aspects of a person's lifestyle. However, 

periodicity detection usually relies on data that is both complete and has no missing values, 

and is accurate with no probabilities associated with the data. With lifelogging, this isn’t 

always the case as people can simply decide not to switch on their logging devices or there 

can be calibration errors with the lifelog sensors. In this paper we address how to detect 

repeating patterns of lifestyle from lifelogs when the underlying data has missing or 

incomplete data, or even data that is erroneous. Once such patterns and periodicities have 

been detected, it is beyond the scope of this paper to determine how to use them or present 

them back to users. To illustrate our work on detection from noisy data, we examine real 

lifelogs, which have in-built gaps and noise. Our work demonstrates that even with very noisy 
data, which is far from being continuous, we can detect repeating patterns and periodicities.  

 

5.2.2   Periodicity Methodology 

Our aim is to detect and report longitudinal patterns in lifelogs, which we can regard as a form 

of time series, and these patterns can be referred to as periodicities. Signal processing theory 

tells us that in order to detect low-level periodicities in any time-series, we calculate its power 

spectral density (PSD) [5.9]. The PSD essentially tells us the strength of the expected signal 

power at each possible frequency of the signal. Because frequency is the inverse of period, we 

wish to identify frequencies that carry most of the energy and then from that detect the most 

dominant periods. Two estimators of the PSD could be used to detect and present 

periodicities; the periodogram and the circular autocorrelation or full cross correlation. The 

power spectral density can be computed using the DFT (Discrete Fourier Transform) or FFT 

(Fast Fourier Transform). PSD is also called periodogram and we can detect and visualise 

periodicity using a periodogram. The periodogram is visualised as a 2D plot with spectral 
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frequencies on the x-axis and the strength of the pattern at each frequency measured on the y-

axis.  

In terms of lifelogging, the periodogram can be used to detect the natural cycles that occur in 

lifestyle, behaviour, and activities. Periodicity can be observed in many natural phenomena, 

such as circadian rhythms associated with our sleep, annual seasons and so on. Intuitively, we 

think of our routine daily lives as composed of various forms of recurring events with obvious 

periodicities around daily, weekly, monthly, seasonal and annual cycles. In any kind of 

spectral analysis of a lifelog we expect to see periodicity around these frequencies. However, 

without the help of lifelogging devices and the resulting lifelog, analysing the periodicity of 
human life is not a practical proposition.  

 

We now define the tools we use to detect periodicity in lifelogs.  

A) Autocorrelation: 

In statistics, correlation is basically measuring how similar two sequences are. This 

quantitative measurement of the similarity between signal 1 and signal 2 can be defined as:  

 

Cross correlation between time shifted sequences, can be defined as: 

 

All possible k-shifted time series could generate another sequence of numbers only changing 

with k, which is called full cross-correlation. The correlation between a signal and time 

shifted version of itself is called an auto-correlation. A lag operator is used to generate the 

time-shifted signal and ‘0 lag’ equals to mean-square signal power. Auto-correlation can be 
defined as  

 

B) Periodogram 

The normalized Discrete Fourier Transform (DFT) of a sequence x(n), n = 0,1,...,N −1 is a 
sequence of complex numbers X(f):  

 

where the subscript k/N denotes the frequency that each coefficient captures. Suppose that X 
is the DFT of a sequence  

 

Notice here that k ranges from 0 to (N-1)/2. In order to find the k dominant periods, we need 

to pick the k largest values of the periodogram. This works well for short to medium length 

periods, but performance is worse for long periods or low frequencies, because each value in 
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the periodogram indicates the power at frequency interval [N/k, N/(k-1)], which is too wide to 

capture large periodicity. Thus the accuracy of periodicity detection at low frequencies will be 

lower than at higher frequencies. For lifelogging, this means there is difficulty in detecting 

patterns measured in years. Another difficulty when using periodograms is spectrum leakage, 

which causes frequencies that are not integer multiples of the DFT bin width to disperse over 

the entire spectrum, potentially resulting in false alarms being in the periodogram. 

Nevertheless, the periodogram is still a good way to guarantee the accuracy of detected 

periods with short to medium frequency. 

In the context of our work on periodicity detection from lifelogs, one of the challenges we are 

faced with is missing or erroneous data from the lifelog. For such a scenario, the Lomb- 

Scargle periodogram [5.10] can be used to detect periodicity in signals with missing, 
unevenly or unequally spaced data. This is defined formally as 

 

where τ is defined as:   

 

The purpose of this work is to determine how well periodicity can be detected in lifelog data, 

focussing specifically on how the tools perform in the scenario of missing data and gaps in the 

lifelog.  

 

5.2.3   Intensity of Periods 

In order to calculate the degree to which a frequency is periodic, we introduce intensity of 

periodicity. The ideal output of periodicity intensity is a series of numbers that indicate the 

regularity of a certain activity’s period. The Intensity could potentially reveal changes in 

periodic data, which in turn may indicate a change of behaviour. Periodicity intensity 

provides a different and practical way for clinicians to review data generated by PwD. 

After identifying the significant periodicity (e.g., weekly, daily) we would like to compute 

how strong or weak the period is and how the strength of the period changes with time. 

Temporal and spectral analysis is a popular signal processing approach to understand how the 

frequency of a signal changes with time. Assuming we are able to detect the most significant 

periods in lifelog data, it is interesting to see how the strength of the periods changes, so that 

we can identify when is high/low regularity. An intuitive idea is to calculate energy carried by 

the most significant periods by using a moving window. 

1) Choose suitable length of window, within which the periodogram can be calculated. 

If the window size is too long, the temporal resolution of the signal will be poor, while 

achieving good frequency resolution, and vice versa. One way to balance the trade-off 

between time and frequency is to use overlapping windows, but what needs to be addressed is 
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that window overlap brings a time lag into the periodicity’s intensity, which  may appear as a 

delay or advance in the intensity graph, compared to real-world data. 

2) Extract a frequency that is exactly and/or close to detected significant periods and the 
corresponding energy from the periodogram. 

Depending on size of the window, the most significant period within a window may differ 

from the most significant period detected using all data. Also the most important periods 

detected using all data could be affected by spectral leakage, as the real frequencies may not 

be the integer times of frequencies of cosine/sine basis in FFT. Using sophisticated methods 
such as adding various window functions could decrease the spectral leakage problem. 

3) Moving window and repeating 2nd step, until there are no more datapoints available. 

The y-axis in the figure stands for the regularity of the selected frequency. Note that the high 

total amount of energy within a window might lead to high intensity values. 

 

5.2.4   Dataset (Periodicity) 

Sleep Data 

The first dataset represents 2.5 years of continuous night sleep monitoring for an individual 

with a capture rate of more than 80%. Data was collected using the wrist-worn Lark sleep 

sensor and contains the following information: 

1) Time to sleep – represents the time between going to bed and falling asleep; 

2) Time to rise – represents the time between waking and getting out of bed; 

3) Time asleep – represents the duration of sleep; 

4) Quality – a numeric indicator of sleep quality computed as a function of how well the 

night’s sleep mapped to the circadian sleep (90-minute) rhythm and how many cycles of that 

rhythm were completed; 

5) Times woken up – represents the number of instances a person wakes up during sleep, 
where “wake up” even represents turning over in bed; 

The distribution of parameters 3 and 4 is shown in Figure 5-1. An obvious periodicity we 

would expect to detect is the weekly cycle, where the subject sleeps longer during weekends 
than workdays because they has a regular work schedule from Monday to Friday. 



FP7-288199 

D4.5 – Activity Monitoring and Lifelogging v2                                                                                      

 
Page 56 

 

                                                                                                                  

                                                                                             

 
Figure 5-1: Visualisation of raw sleep data 

 

Sports Data 

The second dataset represents a 10-year log of physical exercise activities including running, 

cycling and swimming, from an international tri-athlete (now retired from competition). The 

log contains a daily entry for the distance covered for 1 or more of the sports, as well as daily 

text comments which can indicate mood, training effort, relative performance, weather, etc. 

and these can be analysed for sentiment. Sports datasets capture 100% of activity logs over 10 

years. Obvious periodicities to be detected from this data include seasons, performance at 

targeted sports events, perturbations caused by occasional injury and overall decline over the 

decade from ageing. 

 

In Figure 5-2, the raw distances for running, cycling, swimming and for aggregated activity 

effort is shown. The latter of these plots accounts for days where the athlete would exercise or 

compete in more than one discipline, and their aggregated activity is computed according to 

the metabolic equivalent (MET) where the unit of MET is 1 kcal/kg*h. To calculate this the 

average speed for each of the three sports activities of the athlete is used. In [5.11], the MET 
for each sport activity at the average speeds indicated by the athlete are shown in Table 5.1. 

 

Table 5.1: MET table 

 

Activity Speed (kph) MET 

Running 13 12.9 

Cycling 25 8.4 
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Swimming 3 8.9 

 
Figure 5-2: Visualization of raw data in the sports activity dataset 

 

In the running, cycling, swimming and aggregated data visualized in Figure 5-2 the X-axis 

represents time, while the Y-axis is the distance for the corresponding activity. From the 

visualization, no obvious periodicity can be observed in running, swimming or aggregated 
data but there seems to be an annual periodicity in the cycling data. 

For each sporting activity and for the aggregated data, we applied window sizes of 7, 14, 30, 

120, 365 days to calculate the moving averages. Figure 5-3 shows the results of this. Running, 

cycling and swimming start from 2000, 2007 and 2005 respectively. The moving average 

calculates the mean value of a fixed size window and then moves the window one day 

forward to get the new value. Moving average works like a low-pass filter: the bigger the 

window size, the lower the frequency that can pass. Because of this, it is easier to find long-

term trends using a larger window size, since short term shocks in the data (competitions, 

vacation, short-term injuries) will be smoothed out. From the moving average results, we see 

that the running distance decreased over time, while the cycling and swimming distances 

increased. The total amount of energy expenditure according to MET fluctuates, and no 

obvious trends can be seen in the aggregated data. We can infer from this data that after the 

athlete started to train for swimming in 2005 and for cycling in 2007, he adapted himself to 

this by reducing the amount of training for running. 

One major difference between the sleep and sports datasets is that the sports dataset has 100% 

capture rate of activity over 10 years, while the sleep dataset captures just over 80% of the 

nights in a 2.5 year period. The raw figures on sporting activities are augmented by the athlete 

annotating most days with text comments that summarise the day and occasionally report on 

performance or mood. These reports are infrequent (25–30%), and so provide sparse data that 
we can also examine for periodic patterns. 
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Figure 5-3: Moving average values for sports dataset (Run, Cycle, Swim, Aggregated) 

 

Dem@Care Data 

We also examined data captured by the Gear4 sleep sensor in one of the Dem@Care pilot 

sites. Gear4 is a sleep sensor used to detect users’ sleeping conditions. The raw output of 

Gear4 is a CSV file consisting of 7 data fields, namely recording start time, recording stop 

time, time fallen asleep, total sleep time, total deep sleep time, number of interruptions, sleep 

score and full night data (W: awake, S: light sleep, D: deep sleep, A: away). PSD or 

periodogram cannot be applied directly to full night data, since all the data in the strings are 

symbols. In order to achieve this, we concatenate calibrated full night data and digitize 

symbols. 

 

5.3  Results 

5.3.1   Periodogram 

We applied periodograms and correlations to both datasets to see if periodicities were 

apparent even with missing data and irregular sampling. The periodogram reveals the energy 

carried by each frequency across a range and is plotted as a graph where the x-axis is 

frequency and the y-axis is energy. If there is statistically significant energy carried by one 
frequency or different frequencies, this will be revealed graphically. 

 

A. Results on Sleep Dataset 

Each of the parameters from sleep logging (duration, quality, number of wakes, time in bed, 

etc.) has been analysed for periodicity but rather than present all of them, we limit ourselves 



FP7-288199 

D4.5 – Activity Monitoring and Lifelogging v2                                                                                      

 
Page 59 

 

                                                                                                                  

                                                                                             

to just two. For the time asleep, a weekly periodicity is clearly detected as can be seen in 

Figure 5-4. This can be explained by the weekday/weekend cycle, which is the basis for the 

subject’s lifestyle of working during weekdays and having to get up early to commute to work 

and then take up leisure activities, waking up later during the weekend. There is also a 

periodicity around 120-days, i.e. about every 4 months. This cannot be explained without 

consultation with the subject; an interview session is planned, but had not occurred at the time 
of this deliverable.   

 
Figure 5-4: Sleep duration periodogram 

 

For sleep quality as shown in Figure 5-5 there is no weekly periodicity. This tells us that even 

though the subject sleeps more at weekends, he doesn’t actually sleep with better quality. We 

also observe a periodicity around 128 days (ca. 4 months) for sleep quality but at the time of 

writing, without conferring with the subject, this is something we cannot yet explain. 

 
Figure 5-5: Sleep quality periodogram 

 

The other sleep parameters such as time spent in bed, time going to bed have yielded similar 

results, and so are omitted here. The data here shows that it is possible to detect credible 
periodicities from lifelogs even though there is missing data and irregular sampling.  

 

B. Results on Sports Dataset 

Since the sampling rate of our sports activity dataset is 1 day, the minimum periodic pattern 

of this dataset we can detect is 2 days. The sports dataset does not have missing data and is 

consistently and regularly sampled for the three sport activities and for the aggregated data 

MET levels. In Figure 5-6, periodograms for the sports dataset show interesting results. We 

can observe three significant energy levels carried by three different frequencies consistently 

across all 4 subplots. These three frequencies are around 0.14, 0.28, 0.43, corresponding to 

periods of 7 days, 3.5 days and 2.3 days. Moreover, if we look at the plots more finely, there 
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exists a frequency at circa 0.0027 located the near the left end of the cycling and aggregated 

data subplots. This frequency corresponds to the annual period (ca. 365 days) that we 
observed in the visualization of the cycling data. 

 
Figure 5-6: Sports dataset periodograms 

In order to investigate periodicity in irregularly sampled data, we use autocorrelation.  

Autocorrelation computes the correlation between the signal and a time-shifted version of the 

same signal. The x-axis of the autocorrelation plot is time lag and the y-axis is a measure of 

the correlation of the original signal and lagged signal. If the original signal is periodic then 

the autocorrelation of the signal should also be periodic and the periods will be located at the 

peaks of the autocorrelation plot. Autocorrelation of 10 years data is plotted in Figure 5-7. In 

this graph, there are no periodicities observed in the running, swimming or MET score 

aggregated data, but an annual periodicity can be found in the autocorrelation of the cycling 

data. Curious as to where the periodicities over 7, 3.5 and 2.3 days which were found in 

periodograms from running, swimming and the aggregated data, we took one year of data 

from 2007 to see if we could detect periodicity in periodograms for just that year. An 
autocorrelation plot for data from the year 2007 is shown in Figure 5-8. 

 
Figure 5-7: Sports Dataset Autocorrelations (10-year span) 
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Figure 5-8: Autocorrelation plots of sports data from year 2007 

 

The autocorrelation plot of sports data from 2007 shows that there is a very regular weekly 

periodicity in running, cycling and in the total energy expenditure of activities, but a less 

regular weekly periodicity for swimming. We can also find smaller peaks between the two 

obviously large peaks from running and cycling data, which may correspond to the 3.5- and 

2.3-day periodicities also detected in the periodogram. However there are no obvious smaller 

peaks found in the autocorrelation of aggregated data. A possible explanation may be that 

these detected periodicities indicate the lifestyle of the subject such as regular scheduled 

training sessions for running, cycling and swimming. Another explanation might be that there 

exists an inherent timetable that the subject follows in order to balance participation in the 

three different activities. For instance the timetable could be every 2 or 3 days run, cycle or 
swim once. Determining this will require a subject interview, as mentioned previously.  

 

C) Result from Gear4 Sleep Sensor 

 

For the sleep data collected in our @Home pilot site, we calculated periodogram results, 

shown in Figure 5-9. We can observe in the periodogram that there are several peaks in the 

result. Spectral leakage is also observed around the peaks. The highest peak is at ca. 36 hours, 

i.e., about 1.5 days. This result is not typical for sleep data, and requires further investigation. 

By consulting with the clinicians who collect this data, we will determine if the result shown 

is as a result of particular aspects of the PwD's sleep patterns, or whether the algorithms here 
are unstable or otherwise unsuitable for data from this sensor.  
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Figure 5-9: Periodogram of @Home pilot sleep data 

 

5.3.2   Intensity of Periodogram 

The example showed result of intensity in our running data from athletic database. It is 

calculated using 35-window size and 28-overlapping size. Figure 5-10 consists of 4 sub-

figures: the first sub-graph shows visualize raw running data, Y-axis is the distance the athlete 
ran, and the X-axis is time scale in years. 

The second sub-graph represents total energy carried by each window. It shows a trend of 

changing total energy. The third sub-graph is plotted by taking energy carried by ca. weekly 

period and represents intensity of ca. weekly periodicity. We can clearly see a gradually 

descent in the intensity of the running data and 9th year is a watershed. And from the start of 

the data to the 9th year, there are peaks and valleys, where we should investigate further to 

validate whether it is real high/low regularity or false alarms. In the last sub-graph, we can 

observe a horizontal line at Y-axis equals 7. The sub-graph shows periods that carrying 

maximum energy against time. The X-axis is time and Y-axis is the periods that have the 

maximum energy within a window. We can also conclude from the sub-graph that 7-day 

periodicity is getting less regular. And there are some outliers from weekly line could also be 
interesting to look into it. 
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Figure 5-10: Intensity (Running data) 

 

We applied the same algorithms to swimming data and Figure 5-11 shows the result. The sub-

graph order is the same as Figure 5-10. One interesting point to be observed from the last sub-

graph is that weekly periodicity of running is stronger than swimming. 
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Figure 5-11: Intensity (Swimming data) 

 

 
Figure 5-12: Frequency carrying maximum energy (Dem@Care sleep data) 

 

Figure 5-12 shows the frequency carrying maximum energy for sleep data. We can see that 

the horizontal line resides around 36-hour periodicity. Intensity of 36-hour period is shown in 

Figure 5-13. Again without getting back to participant, it is hard to understand what happened 
at the peaks and the valleys. 
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Figure 5-13: Intensity of 36-hour periodicity 

 

5.3.3   Conclusions 

In the work presented here, we applied periodicity detection on two longitudinal datasets, 

which include distances for athletic training and competition for an international triathlete, 

over a 10-year period, and sleep quality, duration and timing data from a subject over a 2.5-

year period. The first dataset was augmented with a pool-based annotation of the triathlete’s 

daily text commentary on his training and performance, from which we were able to get 

annotations for mood, and for performance. This gave us a collection of datasets which are 

rich in the variability of their regularity of logging, from consistent and regular daily entries to 
much more sporadic data with missing data and irregular sampling. 

Applying moving average, we discovered that after starting cycling and swimming at a point 

several years ago, the subject decreased the amount of running while the distances for 

swimming and cycling kept increasing. The use of periodograms revealed that there are 

rhythms of repeating patterns at 7, 3.5 and 2.3 days for the running, cycling and swimming 

data, as well as for when the individual activity data is aggregated based on MET scores. An 

annual periodicity was also detected in the cycling data. Using an autocorrelation plot for data 

from year 2007, an obvious weekly periodicity was detected in running, cycling and 

aggregated MET data but the weekly pattern for swimming is weak suggesting less rigour and 

regularity associated with training in that sport. An autocorrelation plot of running and 

cycling shows an unexpected periodicity at a cycle of less than a week (2 or 3 days). This 

infra-week periodicity may be caused by training schedules for different sports in order to 

achieve a balanced exercise portfolio. There are no significant periodicities detected in the 

Lomb-Scargle periodogram for mood or for performance when fused from the annotations of 

a set of four annotators. 

We have demonstrated in this chapter that automatic detection of periodicities from lifelog 

data can be achieved, even when there is substantial missing data. We have shown that 

methods based on periodograms and autocorrelation can be used to detect periodicity on 

complete datasets, while Lomb-Scargle periodograms can be used to detect periodicity on 

datasets with missing data. Experiments conducted on three datasets with different level of 
sparsity shows that we are able to detect periodicity in these datasets. 

We have also computed intensity of periodicity, and results on different database shows that 

we are able to indicate regularity of periodicity. Further investigation will be conducted in 

order to validate the detected peaks, valleys and trends of the intensity of periodicity. We will 

apply qualitative analysis including interviews with people who provide data (where 
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appropriate) and/or clinicians who can inform us if the detected intensity and periodicity 

reflects the actual behavior of the participant who generated the data. This mode of evaluation 

and verification is necessary when we are dealing with the individual and unique nature of 

lifelog data.  
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 Integration of Components and Usage in Pilots 
 

This section aims to give an overview of the integrated methods that have emerged through 

this work package, and their use across pilots, interlinking visual sensing research results with 

integration and clinical piloting (WP7 and WP8). This overview concerns not only the most 

recent developments presented in this deliverable, but the entire work package, effectively 

reflecting its total contribution to clinical dementia care. 

 

Table 6.1 captures all methods developed, their inclusion in system modules, integration with 
the entire system and use in pilots across the consortium. Further details are given below. 

The CAR (Complex Activity Recognition) component is a visual sensing component based on 

images and depth from ambient 3D-cameras. It integrates the methods described as Activity 

Monitoring from RGB-D Camera (D4.3), People Detection for Activity Monitoring from 

Fixed Camera (D4.4) and People Tracking for Overlapped Multi-Cameras (D4.5). 

Combining the above work it provides: a) location information according to predefined zones 

in a room, b) activity recognition with the aid of rule-based constructs e.g. according to the 

duration of one’s stay within a zone, zone change patterns, his/her posture, and c) GAIT 

measurements such as walking speed, distance walked, stride length and number of steps. 

 

Due to its performance and integration, CAR is one of the very few components which 

provide real-time information in Dem@Care. It has been widely used in @Lab (Nice and 

Thessaloniki) for activity and gait monitoring and in @NH (Luleå) for sleep, night-time 
activity and alerts e.g. bed exits, restroom visits, falls, among other events. 

 

The Human Activity Recognition (HAR) module integrates the methods described as Visual 

Activity Detection and Recognition (D4.3, D4.4) and Activity Monitoring (D4.5). Despite the 

advances and improvements in performance, the component’s output is still accessible offline. 

It has been used in @Lab (Nice and Thessaloniki) as an offline result, available after the 

participant’s visit, reaching 77.47% recall and 55.16% precision. It was also used in all the 

@Home setups in Thessaloniki for kitchen and living room activity recognition, reaching up 
to 91.33% recall and 3.4% precision. 

 

Multiple clinical results have been derived throughout WP8 deliverables in the various sites 

for both CAR and HAR, either as stand-alone methods or in combination with semantic 
fusion. 

 

The Wearable Camera Processing Unit (WCPU) integrates the work in Analysis of Wearable 

Camera Video, including object (ORWC) and room recognition (RRWC) (D3.4, D4.4, D4.5), 

and Action Recognition (D5.4, D5.6) (ARWC). Therefore, it is a module capable of offline 

processing videos from a first-person perspective, and the recognition of locations within an 

apartment, objects in use and entire composite daily activities. This work has been employed 

in @Lab in Nice and @HomeDublin, yielding clinical results reported in D8.5. Notably, one 

of the most interesting aspects of unit consists in the possibility of a precise observation of 

instrumental activities via close-up views, which would allow for clinicians to identify the 
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difficulties of patients. This is the usage scenario of the WCPU component explored in the 

exploitation activities, in the post project exploitation, as detailed in D9.12. 

 

Notably, the visual methods and components in Dem@Care (CAR, HAR and WCPU) may 

appear to be overlapping, they are in fact used as input to higher-level interpretation. Namely, 

CAR, HAR and WCPU activity recognition output (also object and location recognition) 

serve as input to Semantic Interpretation (WP5) which ultimately fuses and merges together 

atomic events into a definitive activity displayed to clinicians. This is reported in D5.4. 

 

Lifelogging has encapsulated two lines of work: Visual Analysis in Lifelogging (D4.3) and 

Periodicity Detection (D4.5). Periodicity Detection and Visual Sensing for lifelogging 

constitute stand-alone studies, given various restrictions (e.g. lack of APIs) that prohibited 

their integration to the system within the lifetime of the project. The study proved to be able 

to detect periodicity by examining longitudinal patterns in sleep, physical activity, and stress 

data for @Home participants. The analysis also identified the regularity of these patterns (e.g. 

circadian rhythms were accurately identified for participants' sleep data), and when a different 

pattern started to emerge. Piloting of this application in @Home in Ireland is detailed in 

Section 6.4 of D8.5 and its results are presented in the Final Pilot Evaluation Report in 
sections 6.2.2.1.3, 6.2.2.2.3, and 6.2.2.2.6 of the same deliverable. 

 

Offline Speech Analysis (OSA) is the module that encapsulates research in Voice Analysis for 

Dementia Assessment and Monitoring (D4.4). This work has studied clinical interviews either 

in @Lab, @Home or @NH settings to derive various vocal metrics useful to assessment and 

care. The works in @Lab have resulted in an integrated OSA component in @Labs, which 

provides a suggested diagnosis for the individual (reported in D8.4, D8.5). The @Home and 

@NH studies were not provide an integrated component, but have yielded optimistic results 
in stress-detection, aiding in long-term observation and care (reported in D8.5).  

 

Table 6.1. Integration of all WP4 components and usage in pilots 

 

Method Mod

ule 
Int

egr

ati

on 

Usage in Pilots 

@Lab @NH @Home 

Nice Thess Luleå Dublin Thess 

Activity Monitoring from 

RGB-D Camera (D4.3) 

CAR ✔ ✔ ✔ ✔ - - 

People Detection for Activity 

Monitoring from Fixed 
Camera (D4.4) 

People Tracking for 

Overlapped Multi-Cameras 
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(D4.5) 

Visual Activity Detection and 

Recognition 

(D 4.3, D4.4) 

HAR ✔ ✔ ✔ - - ✔ 

Activity Monitoring (D4.5) 

Analysis of Wearable Camera 

Video (Room and Object 

Recognition – D4.3, D4.4, 

D4.5) 

WC

PU 

✔ ✔ - - ✔ - 

Action Recognition  

(D 5.4, 5.6) 

Visual Analysis for 
Lifelogging (D4.3) 

Lifel
og 

- 

  

- 

  

- 

  

- 

  

(✔) 

  

- 

  

Periodicity Detection (D4.5) 

Voice Analysis for Dementia 

Assessment and Monitoring 
(D4.4) 

OSA  ✔ ✔ ✔ (✔) (✔) - 
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 Conclusions 
 

This document presented the research carried out in WP4 (Situational Analysis of Daily 

Activities) and described the final version of Dem@Care tools aimed at analysing visual data.  

The performance of the tools was analysed by evaluating their performance on the datasets 

obtained during data acquisition within Dem@Care in order to perform posture recognition, 

action recognition, activity monitoring, and life-logging periodicity detection. The 

improvements in these tools have been presented, compared to their versions presented in 

D4.2, and compared to the state of the art. Chapter 2 described the research conducted for 

tracking individuals through a scene using multiple cameras, and showed how the proposed 

approach improves on the state of the art algorithms for single camera tracking. Chapter 3 

presented the research carried out on video analysis for Action Recognition through Object 

Recognition and Room Recognition on video data from a wearable camera and described the 

improvements achieved there. Chapter 4 showed the work done for Activity Recognition and 

Person Detection from video and RGB-D cameras and described how accuracy has improved 

from earlier versions. Chapter 5 presented Periodicity Detection on longitudinal lifelog data 

and showed how this can be used to improve the analysis and insight into an individual's 
regular habits and frequent behaviours.  


