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towards the aforementioned directions. Two approaches for 
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supervised one using egocentric video data as input, and an 
unsupervised one using as input data from a fixed camera. The goal 
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learning. In addition, an ontology-based pattern-oriented approach is 
presented for capturing in a formal manner higher-level behavioural 
aspects that encapsulate richer semantics.  

 

 

 



FP7-288199 
D5.3 – Behavioural Profile Learning 

 Page 3 
 

 
 

Version Log 
Version Date Change Author 
0.1-0.3 30/07/2013 Document Structure 

Proposition 
Carlos Crispim (INRIA), 
Serhan Cosar (INRIA), 
Georgios Meditskos 
(CERTH), Jenny Benois 
(UB1), Francois Bremond 
(INRIA) 

0.4 30/08/2013 Section 2.2, Section 4, 
contribution to conclusions 
Section  

Aurélie Bugeau, Vincent 
Buso, Jenny Benois-Pineau 
(UB1) 

0.5 25/09/2013 Section 2.1, Section 3, 
contribution to conclusions 
Section 

Georgios Meditskos, 
Stamatia Dasiopoulou 
Chalarambos Doulaverakis 
(CERTH) 

0.6 27/09/2013 Abstract, Executive Summary, 
Introduction Section, Section 
2.3, Section 5, contribution to 
conclusion and merge of 
individual contributions 

Carlos Crispim, Serhan 
Cosar (INRIA) 

0.7 27/09/2013 Revisions to Executive 
Summary, Introduction and 
Conclusion Sections  

Stamatia Dasiopoulou, 
Georgios Meditskos 
(CERTH) 

0.8 27/09/2013 Final draft for internal review Carlos Crispim, Serhan 
Cosar (INRIA) 

0.9 30/09/2013 Internal review feedback  Ceyhun Burak Akgul (Vistek 
ISRA Vision) 

0.10 08/10/2013 Address internal review 
comments  

Stamatia Dasiopoulou, 
Georgios Meditskos, 
Charalambos Doulaverakis 
(CERTH) 

0.11 08/10/2013 Address internal review 
comments  

Aurélie Bugeau, Vincent 
Buso, Jenny Benois-Pineau 
(UB1) 

1.0 11/10/2013 Address review comments – 
Final version 

Carlos Crispim, Serhan 
Cosar, Francois Bremond 
(INRIA), Stamatia 
Dasiopoulou, Georgios 
Meditskos (CERTH) 

1.1 15/10/2013 Address PMB comments Carlos Crispim, Serhan 
Cosar (INRIA) 

 



FP7-288199 
D5.3 – Behavioural Profile Learning 

 Page 4 
 

 
 

Executive Summary 
This document reports on the current work carried out with respect to behavioural profile 
learning for the purpose of supporting the patient-customised services targeted within 
Dem@Care. 

The objective of behavioural profile learning is to dynamically discover person-specific 
behaviour patterns that can be utilised to improve the recognition of the performed activities 
and to allow for PwD-tailored behaviour interpretation and assessment. These behaviour 
patterns may encapsulate a variety of aspects, including the manner in which daily activities 
are performed, idiosyncratic and habitual knowledge, as well as recurrent routines.  
This deliverable reports on the first efforts towards the aforementioned directions. More 
specifically, two approaches for discovering, modelling and recognising ADL are proposed, a 
supervised one using egocentric video data as input, and an unsupervised one using as input 
data from a fixed camera. The goal is to allow for the discovery of behaviour patterns through 
machine learning that would otherwise be difficult to capture in a declarative way. In 
addition, an ontology-based pattern-oriented approach is presented for capturing in a formal 
manner higher-level behavioural aspects that encapsulate richer semantics.  

Preliminary results of the supervised and unsupervised activity recognition approaches are 
presented on public datasets and Dem@Care dataset according to data availability of each 
sensor. Future work will extend the current evaluation by using a larger set of participants 
from the Dem@Care pilots according to the progress of system implementation at the pilot 
sites, and the proposed approaches according to the challenges presented at the pilot 
environments. A preliminary investigation of the proposed ontology-based behaviour patterns 
as means for capturing background knowledge in the semantic behaviour interpretation 
framework described in D5.2 has also been carried out. 
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Abbreviations and Acronyms 
 

ADL Activities of Daily Living 
DnS Descriptions and Situations 
DUL DOLCE UltraLite1 
MOG Mixture of Gaussians 
MPEG Moving Picture Experts Group 
OWL Ontology Web Language 
OWL-QL Ontology Web Language Query Language 
OWL-DL Ontology Web Language Description Language 
PwD People with Dementia 
RDF Resource Definition Framework 
RGBD Red-Green-Blue-Depth 
SWRL Semantic Web Rule Language 
W3C World Wide Web Consortium 
XML eXtensible Markup Language 
  
  
  

                                                
1http://www.loa.istc.cnr.it/ontologies/DUL.owl 
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1 Introduction 
In order to support personalised health status assessment and in turn patient-tailored 
adaptation of feedback services as targeted by Dem@Care, it is quintessential to provide 
mechanisms for patient profiling as well as for updating and customising the clinical 
guidelines, recommendations and management procedures pertinent to people with dementia. 
It is the role of Task 5.2, to cater for such aspects.  

Patient profiling involves the identification and extraction of behavioural patterns so as to 
enable: i) the recognition of the monitored PwD activities, despite idiosyncratic particularities 
in the way each individual carries out a given activity, and ii) the assessment of whether the 
monitored behaviour comprises abnormal or alarming deviations in PwD. Behavioural 
patterns may refer to low-level traits (e.g. walking pattern) as well as to higher-level 
behavioural aspects including habits and routines (e.g. the manner in which an individual 
makes his/her morning tea).  

This deliverable reports on the first efforts towards the aforementioned directions. More 
specifically, two approaches for discovering, modelling and recognizing ADL are proposed, a 
supervised one using egocentric video data as input, and an unsupervised one using as input 
data from a fixed camera. In addition, an ontology-based pattern-oriented approach is 
presented for capturing in a formal manner high-level behavioural aspects. The population of 
these models can be done either manually by explicitly defining the modelled attributes, e.g. 
habits, preferences, interests, how a person performs an activity/order of activities, or by 
inferring unobservable information (patterns/trends) from observable data relating to their 
activities; currently the focus is on the former. 
The rest of the deliverable is structured as follows. In Section 2, we present the state of the art 
methods for identification and extraction of behavioural patterns as a resource to build 
behavioural profiles. Section 3 presents the supervised activity recognition approach for 
egocentric cameras. Section 4 presents the proposed unsupervised framework for discovering, 
modelling and recognizing ADL.  In Section 5, we describe the ontology-based patterns that 
have been developed for behaviour modelling. Finally, Section 6 concludes the deliverable 
and discusses next steps. 
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2 Related work 
We herein present knowledge-driven methodologies applicable to identification and 
extraction of behavioural patterns as a resource to build behavioural profiles.  

2.1  Unsupervised Learning of Activity Models using fixed Cameras 
Activity analysis and recognition from video is a fast-growing field based on different 
methods and techniques. The goal of activity recognition is to analyse human activities from 
an unknown video based on the actions and movements of a person. A complete overview of 
previous methods on human activity recognition is proposed in many survey papers [2.1.1, 
2.1.5, 2.1.14]. In [2.1.1, 2.1.5, 2.1.14], the authors emphasize the importance of high-level 
activity understanding for several important applications, namely those related to Activities of 
Daily Livings (ADLs). 

As explained in Section 2.2, activity recognition can be performed by using egocentric 
wearable cameras. In addition, there are methods that address the problem of detecting 
complex daily activity using fixed cameras [2.1.16, 2.1.8, 2.1.12]. Based on the strategy of 
action classification, these methods can be categorized in various ways. 

Previous works in [2.1.7, 2.1.10] in activity recognition are categorized as knowledge and 
logic-based approaches. For example, authors in [2.1.16] proposed a monitoring system for 
the analysis and recognition of human activities. It includes detecting and tracking people and 
recognizes their posture. Then, activities of interest are recognized based on this information. 
Three sources of knowledge were exploited: model of activities, 3D model of the observed 
scene and 3D model of the mobile object present in the observed scene. While a logic-based 
method is a natural way of incorporating domain knowledge, it requires an extensive 
enumeration by a domain expert for every deployment. 

Recently, particular attention has been drawn on the object trajectory information over time to 
understand long-term activities. Trajectory-based approach can be classified into supervised 
and unsupervised methods: The supervised methods [2.1.6, 2.1.9] can build activity models in 
an accurate way. But they require manually labelled large training datasets. The unsupervised 
methods include works such as in [2.1.8] where authors use fuzzy k-means algorithm to 
cluster trajectories using spatial and temporal information and obtain motion patterns that are 
represented as a chain of Gaussian distributions. Based on the learned motion patterns, using 
the Bayes rule, the probability of a new trajectory under each motion pattern is calculated and 
it is used to detect anomalies and predict behaviours. In [2.1.4], the trajectories are modelled 
as a sequence of directions computed (roughly) via the angle between two consecutive 
positions. The sequence of directions is modelled as a Von Mises (or circular normal) 
distribution and, in an unsupervised way, the k-medoids clustering technique is used to build a 
mixture of Von Mises distributions. As in [2.1.8], the probability of a new trajectory under 
this distribution is used to detect abnormal behaviours. These methods depend on the final 
distribution's ability to represent actions. Therefore, these methods cannot represent and 
recognize events that have complex hierarchical structure in space and time. The approach in 
[2.1.12] uses HMM to represent trajectory paths and, based on eigenvector-based clustering, 
captures spatio-temporal relations in trajectory paths, allowing high-level analysis of an 
activity, which is suitable for detecting abnormalities. Zhong et al. divide the video into equal 
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length segments and classify the trajectory features into prototypes that are obtained by k-
means clustering [2.1.15]. Then, a prototype–segment co-occurrence matrix is computed from 
these prototypes and used to detect unusual events. Since the main goal of this approach is to 
detect abnormalities, the long-term trajectories are considered and the activities are modelled 
in coarse level. However, recognizing various types of daily living activities requires to model 
actions in space and time from coarse level to finer levels. 
In addition, there are some methods that model the co-occurrences of actions. In [2.1.11] from 
RGB-D data, the positions of 15 body joints are extracted and used to recognize 16 actions 
using k-means clustering. Spatial-temporal motion features are encoded by spatial-temporal 
correlograms capturing long-range temporal co-occurrence patterns in [2.1.13]. Then, an 
unsupervised generative model is applied in order to learn different classes of human actions 
from these correlograms. Other than that, Bobick and Wilson use dynamic programming 
based approaches to classify activities [2.1.2]. These methods are effective when time 
ordering constraints hold.  
In our approach, we propose a new framework that enables to model, discover and recognize 
activities in an unsupervised manner for monitoring patients. We use an intermediate level 
representation of features (the Primitive Events) composed of basic action primitives, which 
form the human motion. We present a hierarchical activity model categorizing complex 
activities using increasing granularity levels of the spatio-temporal structure of basic actions.  
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2.2  Supervised Learning of Activity Models using Wearable Cameras 

2.2.1   Wearable Cameras 
Activity recognition has been widely studied by the computer vision community. We refer the 
reader to the surveys [2.2.1, 2.2.2] for a more complete treatment of the topic. Most of 
existing works are dedicated to videos captured by fixed ambient cameras. In the context of 
ADL recognition, using fixed cameras present some limitations. The field of view can be 
limited and might not always allow capturing all relevant information. It is therefore difficult 
to keep all relevant body parts, including hands, in focus and at sufficient resolution at all 
times. 

Egocentric videos captured by wearable cameras present the advantage to capture the action 
realized by a person by always being focused on the user point of view. Hence, occlusions of 
manipulated objects tend to be minimized as the workspace containing the objects is always 
visible to the camera [2.2.3]. Furthermore, the same objects tend to be at the same viewing 
position when manipulated (generally the centre of the picture).  
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Wearable cameras also represent a cheap and effective way to record user activity for 
scenarios such as tele-medicine or life-logging.  
Several devices have been proposed in the literature. As an example, the SenseCam device 
[2.2.4, 2.2.5], worn by a person, provides image lifelogs. The WearCam project [2.2.6] uses a 
camera strapped on the head of young children. This setup allows capturing the field of view 
of the children together with their gaze in order to monitor the impairments in child 
development. In [2.2.7, 2.2.8] a vest was adapted to be the support of the camera. The camera 
is fixed on the shoulder of the patient with hook-and-loops fasteners which allow the camera’s 
position to be adapted to the patient’s morphology. A microphone is integrated in the camera 
case and records a single audio channel. 
 

2.2.2   Recognition of ADLs 
There has been a fair amount of work on recognizing ADL by analysing egocentric videos. 
Most of the studies were performed under a constrained scenario, in which all the subjects 
wearing the cameras perform actions in the same room such as kitchen or office [2.2.9, 
2.2.10], and therefore interact with the same objects, e.g., a hospital scenario of Dem@Care in 
which the medical staff ask patients to perform several activities. This scenario allows making 
assumptions on the objects or even uses instance-level visual recognition [2.2.11]. Fathi and 
al. [2.2.12] present a model for learning objects and actions with very little supervision. In 
particular a representation for egocentric actions based on hand-object interactions is 
introduced. The authors also develop an approach for automatically constructing a joint model 
of activities, actions and objects, in which the context provided by each element helps 
recognizing the others. In [2.2.9], observation stemming from hand motion templates and 
external sensors for room transitions are fed to a dynamic Bayesian network that infers the 
activity from a set of predefined sequences of recognized manipulations. In [2.2.7], a video 
structuring approach was introduced combining automatic motion based segmentation of the 
video and activity recognition by a hierarchical HMM. Both audio and visual features were 
used.  
 
It is only recently that the more challenging unconstrained scenario has been examined 
regarding activity recognition. Kitani and al. [2.2.13] recognize ego-actions in outdoor 
environments using a stacked Dirichlet Process Mixture model.  

Pirsivash and Ramanan [2.2.14] propose to train classifiers for activities based on temporal 
pyramids. These pyramids extend the well-known spatial pyramid to approximate temporal 
correspondence. Given a set of frames T	to be analyzed and Kobject models, a score for an 
object i at pixel location and scale p = (x, y, s) in frame t is given by score୧୲(p) 	∈ 	 [0,1].  
The authors use the deformable part model [2.2.15] to compute these scores on record the 
maximum value of each model i in each framet: 
 

୧݂
୲(p) = max୮ score୧୲(p). 

 
The windows locations and scale which give the best scores are considered to host an object 
and are considered as features for the activity recognition task. 
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Bag of features is a natural way of aggregating these features through time. However, these 
representations ignore any temporal structure, e.g. “making tea” requires first “boiling water” 
and then “pouring it into a cup”. Inspired by the important work of [2.2.16] on spatial 
pyramid match kernel, the authors introduce temporal pyramids to address the use of different 
objects over time. At top-level ݆ = 0 the feature is a histogram over the full temporal extent of 
a video clip ܶ,. The next level is the concatenation of two histograms obtained by temporally 
segmenting the video into two half (ܶଵ, and ܶଵ,ଵ), and so on, leading to the representation: 
 

∀	݇ ∈ {1… 2}ݔ
, =

2ିଵ

|T|
 ୧݂

୲

௧∈்ೕ,ೖ

. 

 
This model is then used for activity recognition by learning linear SVM classifiers on features  
 

ݔ = ݉݅݊ ൬ቂݔଵ
,…ݔ

, ݔ…
,ଶಽቃ

்
, 0.01൰. 

 
In a second part of the paper [2.2.14], the authors propose active object models to recognize 
more easily objects undergoing hand manipulations. In the training phase a subset of active 
training images for a particular object is added. To model active objects, the position and 
scale are added to the previous local appearance feature. Indeed, active objects tend to be at a 
position and scale convenient for hand manipulation. Applying this knowledge on the object 
being interacted with dramatically increases the performance. 
 
The approach making use of these "active" areas for ADL recognition has also been studied 
by Fathi and al. [2.2.3] under a constrained scenario, where the authors enhanced the 
performance of their algorithm by defining visual saliency maps.  They focus on activities 
requiring eye-hand coordination and model the relationship between the gaze point ݃௧, the 
scene objects and the action label ܽ.For each pixel of an image, three features are used, 
leading to the final feature ݔ௧:  

 Object-based features, i.e. maximum scores of different object classifiers 
 Appearance features, i.e. histogram of colour and texture on a circle around the pixel 
 Future manipulation features; In general, hands activity in a few frames ahead 

provides a strong cue for predicting the gaze location in the current frame. First each 
frame of the video is segmented into foreground/background [2.2.17]. To check if a 
pixel in current frame ݂ belongs to the foreground in frame ݂ +  the foreground mask ,ݐ
of frame ݂ +  is transferred to frame ݂using optical flow vectors between adjacent ݐ
frames. 

 
For each action ܽ, an SVM classifier is trained by selecting the positive features from the 
pixels surrounding the gaze locations in training sequences corresponding to the action ܽ.  The 
negative features are taken from the pixels far from the gaze point. After the classifiers are 
trained, the likelihoods ݔ)௧|a, g୲) can be computed. The final step of the algorithm consists in 
evaluating the posterior probability (ܽ|ܺ) of action ܽ given the sequence of image features 
ܺ = ,ଵݔ} … ,  ே}. This probability directly results from the previously computed likelihoods andݔ
the estimation of the most likely sequence of gaze locations. 
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Interactions between humans and objects have also been studied for classical videos. In 
[2.2.18], the human is first automatically detected at each frame. Next, the relevant object and 
its interaction with the human are determined. Only still images annotated with the action 
label are used for learning. No information on location of humans or objects is given to the 
classifier. The major contribution of this paper versus previous work that already studied 
human-object interaction [2.2.19, 2.2.20] is the use of a weakly supervised learning phase. 
This method has later been extended by including temporal information [2.2.21]. The object 
and the person are localized in space and tracked through time. An action is then represented 
as the trajectory of the object with respect to the person position.  
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2.3  Ontology-based Approaches for Behaviour Modelling 
The inherent requirements in pervasive environments for heterogeneous data communication 
and integration have motivated a growing body of research in ontology-based frameworks for 
context modelling [2.3.1], key elements of which are behavioural aspects, such as daily 
activities, recurrent routines (e.g. bed time routine), frequency of activities, and so forth. The 
core idea is to map low-level information (e.g., objects, postures, location, and atomic events) 
and behaviour aspects on ontology models that capture everyday common sense knowledge 
about the individual’s preferences and styles for performing certain activities. These models 
can then be used by ontology reasoning services to infer complex situations, detect 
abnormalities, learn new habits/trends, etc. In this section, we review the literature on 
ontology-based behaviour models, i.e., the data structures that can hold the characteristic 
attributes of a type of users. The population of these models can be done either manually by 
explicitly defining these attributes, e.g. habits, preferences, interests, how a person performs 
an activity/order of activities, or by inferring unobservable information (patterns/trends) from 
observable data relating to their activities. The definition of the data structures/ontology 
schema is usually referred to as behavioural profile modelling that serves as a template for 
manually defining or automatically inferring/recognising specific user profiles for different 
individual behaviours [2.3.2]. 

Several ontology-based models have been proposed in the literature to capture user behaviour 
in terms of activity patterns that describe the structure of complex activities that are built from 
atomic and other complex activities. Central to the proposed approaches, yet primary cause of 
variation is the approach taken to define such patterns. Roughly speaking, two strands 
permeate the relevant literature.  
On one hand, there are ontology-based approaches that adhere to a purely ontology-based 
paradigm (e.g. Web Ontology Language 2 (OWL 2) [2.3.3]) using Description Logics [2.3.4] 
to model the semantics of the domain. Due to the lack of temporal semantics and limited 
support for non tree-like relations [2.3.5], such approaches cannot capture the temporal 
extension of activities nor intricate activity patterns. In particular, complex activity definitions 
are reduced to the atemporal intersection of their constituent parts [2.3.6][2.3.7][2.3.8][2.3.9] 
or at best, augmented, with notions such as recently used and second last activity to simulate 
some basic temporal reasoning [2.3.10]. As a result, purely ontology-based approaches fall 
short to effectively capture: 

 Composite activities and information about their temporal extension [2.3.11], since 
OWL does not allow the assertion of new named individuals. 

 Temporal (e.g. sequential, interleaved, concurrent) and non tree-like contextual 
correlations among activities, since the schema-level axioms in OWL cannot describe 
arbitrary relational structures, e.g., relations among individuals that are not connected.  

On the other hand, hybrid approaches embrace the combination of ontologies and rules, as a 
way to compensate for the limitations of OWL and to provide for more expressive and 
flexible solutions than their purely ontology-based counterparts. Under this paradigm 
[2.3.12][2.3.13], ontologies are used to model the domain activities as a hierarchy of classes, 
with each class described by a number of properties, such as time and location, whereas rules 
are used to establish the complex activity correlations and the relative temporal extensions 
that define the activity pattern semantics. Prominent examples include the use of SWRL 
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(Semantic Web Rule Language) [2.3.14][2.3.15] and Jena [2.3.16] rules, the combination of 
ontologies with Complex Event Processing engines [2.3.17] and RDF (Resource Description 
Framework) stream reasoning [2.3.18][2.3.19][2.3.20]. For example, the activity recognition 
procedure in [2.3.16] is realised by a set of rule-based activity patterns in the Jena framework 
that combine ontological information relevant to location, sensors, objects, postures, etc. In 
[2.3.19] prolog-like rules are utilised over RDF streams to define patterns for detecting 
complex situations. In [2.3.14], SWRL rules are used to inference complex temporal interval 
relations and assertions of new activities, based on the notions of time slices and fluents 
[2.3.21][2.3.22]. In [2.3.23][2.3.24] the ontological rule-based reasoning is performed by 
SWRL and SQWRL [2.3.25] to infer inconsistencies between monitored status and scheduled 
status, e.g. lying in an inappropriate location. Finally, in [2.3.26] a personalized architecture 
for smart phones is proposed to support PwD undertaking ADLs as they move from one 
environment to another. The reasoning engine takes as input the models of user preferences, 
activities and the context and provides customized support in terms of personalized rules that 
are used to select user preferences based on the current context. 

 
Figure 2.3.1: The behaviour ontological model [2.3.27] 

 
The aforementioned hybrid approaches, however, define ontologies for the representation of 
basic activity-related information, suppressing the modelling of other intrinsic behavioural 
aspects, such as the modelling of repeated group of activities over a period of time 
(routines/habits) or the association of descriptive contexts to domain activities, e.g., the 
normal duration or the frequency of occurrence of an activity. The Behavioural Ontology in 
[2.3.27] aims to capture concepts and features of life habits, i.e., long-term behaviours. More 
specifically, the ontology (Figure 2.3.1) allows capturing repetitive patterns of behaviour and 
associated semantic information, such as, information about the primitive actions and patterns 
of primitive actions that characterise a life habit. The life habits encode information about the 
different ways an individual performs ADL activities and they are identified by analysing the 
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ADL data of the activity logs [2.3.28], such as the sensor activation sequences, as well as 
statistical properties of each pattern’s occurrence. Towards this end, the notion of support is 
defined as the proportion of the number of times a pattern occurs in the activity log for a 
particular ADL given the total number of occurrence of all other patterns for that activity. 
In [2.3.29], an ontology-based model for capturing user preferences and behaviour routine in 
the context of a ubiquitous environment is presented. To this end, two OWL ontologies have 
been created: the so called spatio-temporal ontology of user preference (STOUP) to represent 
user beliefs, desires, and intentions related to different times and places, and the spatio-
temporal ontology of user routine ontology (STOUR) which allows expressing the recurrence 
of activities and respective locations that comprise the routine. As depicted in Figure 2.3.2, 
the STOUP ontology allows expressing positive or negative preferences, which are related to 
a certain time and place, and can also be associated with what the user (agent) is doing, and/or 
what they intend to do next. The Preference class is further specialised into three 
subclasses, namely ResourceInterest, EnvironmentDesire and Intentional-
ControlCommand, allowing a preference to refer to resources of interest (e.g. TV channel), 
environmental desires (e.g. light intensity) and operations (e.g. rolling down the curtain) 
respectively. 
 

 
Figure 2.3.2: Spatio-Temporal Ontology of User Preference (STOUP). 

 

In turn, the STOUR ontology (Figure 2.3.3) allows expressing daily, weekly and monthly 
routines, in the form of ordered sequences of user activities and/or locations, along with their 
associated expected time interval. The three specialisation classes of the Routine class allow 
expressing the different types of routines, while respective constituent RoutineItems can be 
included through includesItem property assertions. Two temporal properties, namely 
isAfter and isBefore, are used to capture ordering constraints among the routine items, 
while user activity, location and time information pertaining to each routine item is captured 
through respective properties.  
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Figure 2.3.3: Spatio-Temporal Ontology of User Routine (STOUR). 

 

In [2.3.30] an ontology-based model is presented for daily activity recognition and detection 
of behaviour abnormalities in a smart home environment for supervising elderly people. Four 
types of activity abnormalities are considered: i) duration abnormalities, where there is a 
discrepancy between the actual duration of the activity and its usual duration, ii) context 
abnormalities, denoting that an activity is performed in the wrong location, iii) unusual time 
abnormalities, capturing situations where an activity is performed in an unusual time of the 
day, and iv) order abnormalities that correspond to activities performed in an order other than 
the usual one. To support the inference of the aforementioned abnormalities, a domain 
activity ontology is proposed to model the daily programme of the supervised person (Figure 
2.3.4). As illustrated, each activity can be associated with the set of its constituent sub-
activities (e.g. reading is composed of walking, reaching the bookshelf, taking a book, 
walking again and sitting), the set of complex activities that the considered activity may be 
part of, context information capturing the typical locations where an activity is performed, the 
typical duration of an activity, its goal, as well as dependencies in the form of temporal 
sequences involving the activity (e.g. resting takes place after lunch). To reason about 
activities and abnormalities, the ontology model is translated into a stochastic context-free 
grammar and tree-parsing. 
 
However, there is still no consensual behaviour ontology in the literature that may be broadly 
reused to conceptually describe activity patterns and the preferred ways of individuals of 
doing activities, e.g. routines and habits. A major obstacle to ontology sharing and reuse 
appears with ontologies in which the intended semantics is captured by the implementation, 
rather than the axiomatisation [2.3.31], such as in the hybrid approaches, where the semantics 
is encapsulated in rules, rather than in the domain models. A prominent example is the 
assertion of new named individuals for representing inferred complex activities, e.g., assert a 
tea preparation instance that is inferred on the basis of heat water and use tea bag instances. 
Thus, applications that share similar purpose and scope cannot directly avail of existing 
ontologies, unless specific implementation details are made available. 
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Figure 2.3.4: Activity model from daily programme ontology. 

 

Moreover, the existing behaviour models provide the vocabulary for the representation of 
asserted relations, e.g., sequence of activities, without capturing the structure and semantics of 
the respective behaviours. For example, the ontology in Figure 2.3.1 is used to represent 
action patterns, that is, the temporal relations among the ADL instances that have been 
detected from the activity logs and characterise a life habit. The ontology, however, falls short 
to provide reusable descriptions of a life habit, e.g., the domain activity types that are 
involved, or to associate activity classes with descriptive contexts, e.g. to define the frequency 
of occurrence of certain activities on a daily or weekly basis.  

Finally, due to individual preferences and/or limitations, the performance of ADLs may vary 
and in some cases, even the same individual may carry out an activity in various ways and 
sequences. Therefore, there is a need to associate behaviours with multiple descriptive 
contexts, since different situations merit different distinctions. The existing behaviour 
ontologies are not flexible enough to represent and manage the different ways (views) of 
performing activities. 

To promote a well-defined description of behaviours and achieve a better degree of 
knowledge sharing and reuse, we developed an ontology model for behaviour patterns, where 
the different patterns are represented as specialized instantiations of the descriptions and 
situations (DnS) ontology pattern [2.3.32] that is part of DOLCE+DnS Ultralite. The 
developed patterns treat domain classes as instances to allow property assertions to be made 
among activity types (meta-patterns). In that way, they enable the representation of 
contextualised views on behaviours, and afford reusable pieces of knowledge that cannot 
otherwise be directly expressed by the standard ontology semantics. 

Several ontologies have been explored as means to capture meta-knowledge in a declarative 
way. In [2.3.33], a top-level ontology is proposed to model the semantics common to all 
dimensions of an information space, i.e., levels of granularity, conflicting and overlapping 
relationships that can be used to evaluate and compare concepts and terms of the ontologies 
built upon them. In [2.3.34], an ontology-based framework, based on the Event-Condition-
Action (ECA) pattern, is presented in order to integrate heterogeneous semantic web services 
via rule definition. In [2.3.35], an ontology is used to model different types of event rules in 
order to enable automatic service discovery, while in [2.3.36], a Rule Management Ontology 
is presented to support the representation of event-based rules that trigger specific actions in a 
context-aware recommender system. Similar to [2.3.36], we aim to promote reusable and 
interoperable contextual activity models. However, unlike [2.3.36] that focuses on the 
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definition of a vocabulary representing event-based rules, we use the DnS ontology pattern to 
formalise high-level behaviour descriptions. As such, the underlying semantics of the 
behaviour patterns can be reused in already existing frameworks for behaviour modelling and 
processing. 
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3 Unsupervised Activity Recognition using Fixed Cameras 

3.1  Introduction 
The complete framework that we propose is able to recognize long-term (hours) activities in 
an unsupervised manner and can be used in unstructured scenes. It uses contextual 
information to automatically create an intermediate structure of action primitives in order to 
build a hierarchical activity model that characterizes an activity. This is done in several steps: 
(a) long-term videos are processed in order to obtain information about the movement 
(features) about an observed person (i.e. global positions and the motion of his/her body 
parts). (b) Features are used to learn the scene regions (what we call topology) in multi-
resolution levels. (c) Features and scene regions are spatially and temporally fused to build 
primitive events which represent an action primitive, such as passing from one region to 
another. (d) Based on the primitive events in different resolution levels, activities are 
modelled in a hierarchical. (e) Recognition is achieved by comparing similarity between 
models of activity. These steps are explained in detail in the following section.  

3.2  Discovering activities from video features 

3.2.1   Low-level Processing: Feature Extraction 
At each particular time-stamp of a long time video, our framework extracts a set of space-time 
trajectory features describing the global position of an observed person and the motion of 
his/her body parts. The information about the motion of the person is gathered in a chunk, that 
we call Feature Chunks (FC), in order to represent the motion in the scene. The information is 
obtained after decomposing the video into short sequences of images (i.e. video chunks) 
based on significant changes of human motion (e.g., in speed). Next, we are going to describe 
how FC are extracted using the input data from 2D and RGB-D cameras. 

Feature Extraction from 2D Cameras 
The position of a person is estimated by using a set of tracklets, which is computed for each 
video chunk by tracking particular corner points. First, 500 corner points [3.4] are randomly 
initialized and tracked over time using KLT [3.2]. Second, we compute 4 clusters (k-means) 
of the points with respect to their speed and position, representing static, slow, medium and 
fast motion. Finally, we compute the global position tp  of the person at time t , by averaging 
the centroids of the 3 point clusters (i.e. slow, medium and fast motion). 

Due to noise in images tp  can be unreliable. Therefore, we obtain a smoothed global position 

tp~  by applying a Kalman filter 1K  to tp  in combination with the last sn  smoothed 
positions: 
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The sequence of  tp~  represents the global trajectory which is represented in Figure 3.1-(a) 
by green points. 

 

 
Figure 3.1: Global trajectories (green) & Pixel Tracklets (purple to pink) 

 

We compute the person speed ts  at time t  as the difference of the person position at time t  

and 1t . Similarly, we compute a smoothed speed ts~  by applying a Kalman filter 2K to ts  , 
in combination with the last sn  smoothed speeds: 

 

 
(3.2) 

 

Finally, the video is decomposed into video chunks by comparing ts~  with a threshold. 

 

Consequently, each video chunk is associated with a Perceptual Feature Chunks with the 
following attributes: FCDeparture , FCArrival  which are two Gaussian distributions 
characterizing the person positions at the beginning and end of the video chunk. The mean 
and standard deviation (  , ) of the position distributions are computed using the first (or 
last) gn  points of the global trajectory. FCStartFrame , FCEndFrame  represent the first and 
last frame number of the video chunk. FCletsPixelTrack  are the pixel-based tracklets used to 
calculate the agent global trajectory. An example of FCletsPixelTrack  (pink to purple) of a 
person moving from the armchair to the kitchen is represented in Figure 3.1-(a). An 
illustration of the feature chunks attributes can be found in Figure 3.1-(b). The feature chunks 
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enable to collect the necessary information for activity understanding and to avoid expensive 
computational time, especially for long-term activities.  

Feature Extraction from RGB-D Cameras 
The position of the person in RGB-D camera view is estimated by using the person detection 
algorithm explained in [3.1]. Using this algorithm, the centre point of the bounding box that 
covers the people in the scene is estimated. Simply, at each frame we use this algorithm to 
detect the centre point of the person in the scene and create a trajectory by concatenating the 
centre points.  

Unlike what we do for 2D cameras, since we represent a person using one point, we do not 
need to cluster the points by their speed. We decompose the video into chunks in every two 
frames and set FCDeparture , FCArrival parameters as trajectory points at those particular 
frames. Again, FCStartFrame  and FCEndFrame  represent the first and last frame number of 
the video chunk.  

Since we do not extract local motion of the person, we do not use the parameter 
FCletsPixelTrack in FCs for RGB-D cameras. In future, we are going to use an extended 

version of our person detection algorithm that will detect body parts such as head, hands, feet, 
etc. and record the local motion in FCletsPixelTrack  parameter. 

3.2.2   Topology Learning 
When a tracked person performs activities, he/she interacts with many objects that can be 
represented by fixed regions (e.g. the person interacts with the kitchen to prepare meal). We 
name each set of scene regions a topology (or contextual information) and learn each 
topology by clustering trajectory points ( tp~ ). 

To learn a topology, we use the Perceptual Feature Chunks associated to one or several people 
performing activities in the same scene at various time. From this set of sequences, we extract 
a set of points ܲݏݐ݊݅ௌ  of the FCDeparture  and FCArrival  of all videos.  

 

ௌݏݐ݊݅ܲ =  (3.3) {(ߤ)ி݈ܽݒ݅ݎݎܣ}U{(ߤ)ி݁ݎݑݐݎܽ݁ܦ}

 

We perform k-means clustering [3.3] over ܲݏݐ݊݅ௌ. The number of clusters represents the 
level of granularity of the topology, where lower numbers imply smaller number of regions 
that are wider. Each cluster defines a ܴܵܿ݁݊݁݁݃݅݊(ܴܵ). We denote a topology at level 
݈associated with ݇ clusters as ܶ = ൛ܴܵ , … , ܴܵିଵ ൟ. 

 

We represent a scene model as a set of topologies of different resolution levels. We propose 
for building this scene model to calculate 3 levels of topologies that correspond to 5, 10 and 
15 clusters. Figure 3.2 describes the scene model obtained by a clustering procedure in a 
hospital room for our dataset described in Section 3.3. 
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Figure 3.2: (a) Initial scene (b) Scene model example with 	݈ = 1, 2 and 3 obtained by k-means 

clustering (݇ = 5, 10 and 15, respectively)  

 

3.2.3   Primitive Events 

We propose an intermediate layer called ܲ(ܧܲ)ݐ݊݁ݒܧ݁ݒ݅ݐ݅݉݅ݎ that enables to link gradually 
the extracted features (low-level information) from images to the semantic interpretation of 
the scene (high-level information). A ܲܧ is the event characterizing a Feature Chunks 
(Section 3.2.1) over a single topology (Section 3.2.2). For each agent, a sequence of ܲܧ is 
built using the sequence of Feature Chunks and a topology ܶ. In practice, we build 3 
sequences of ܲܧ (for three levels of topology, (݈ = 1,2,3) for a single input video.  

A ܲܧ consists of 4 attributes. We will describe the two of them: ܶ݊݅ݐ݅ݏ݊ܽݎா and 
ாݏܿ݅݉ܽ݊ݕܦ݈ܽܿܮ   are described in the following subsections. 

 

The ܶ݊݅ݐ݅ݏ݊ܽݎா  

It describes the movement of an agent over the scene by extracting the transition information 
performed between the learned scene regions ܴܵ at one level, ݈. 
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The ܶ݊݅ݐ݅ݏ݊ܽݎா  is represented as a directed pair of regions:  

 

 (3.4) 

 

where ܴܵ݊݅݃݁ݐݎܽݐ and ܴ݊݅݃݁݀݊ܧ are the labels of the nearest ܴܵ (݅th scene region from 
ܶ) to the ݁ݎݑݐݎܽ݁ܦி(ߤ) and ݈ܽݒ݅ݎݎܣி(ߤ) positions. 

 

The ݏܿ݅݉ܽ݊ݕܦ݈ܽܿܮா  

The ܶ݊݅ݐ݅ݏ݊ܽݎா  can only describe the agent global motion while he/she performs an 
activity over the scene (moving from one region to another one or staying in a region). To be 
able to model finer activities (low-level activities), we compute the ݏܿ݅݉ܽ݊ݕܦ݈ܽܿܮா  
attribute that contains finer features (point tracklets) on the movement of the agent body parts 
(hands, arms, torso, etc.). 

The ݏܿ݅݉ܽ݊ݕܦ݈ܽܿܮா  are obtained by clustering the FCletsPixelTrack (Section 3.2.1). For 
clustering, we use the mean-shift algorithm [3.5]. In the literature, the methods for tuning the 
bandwidth of the mean-shift algorithm are not appropriate to compute a finer description of 
the local motion. Thus, we adapt the mean-shift bandwidth automatically as a function of the 
agent global position: 
 

)()(  FCFC ArrivalDepartureh   (3.5) 

 

where ℎ is the bandwidth window. Figure 3.3 illustrates five examples of the computed 
ாݏܿ݅݉ܽ݊ݕܦ݈ܽܿܮ  (green) from the clustering of the FCletsPixelTrack (pink) associated to 
the following movements: arms up, arms down, join hands, bend down and stretch up. It can 
be noticed how the local dynamics (green tracklets) can capture five activities while the 
person remains at the same location. 

 EndRegionnStartRegio=TransitionPE 
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Figure 3.3: Example of the abstraction of FCletsPixelTrack  into PEicsLocalDynam . 

 

3.2.4   Building the Hierarchical Activity Model 
Activity Discovery 

The sequences of primitive events are very informative about the activity occurring in the 
video (See Figure 3.4). However, a ܲݐ݊݁ݒܧ݁ݒ݅ݐ݅݉݅ݎ can only describe a snapshot of the 
agent’s motion. To provide more meaning, a better representation of the discovered activity is 
needed. 

If a person is staying in a region for a certain time, we need to fuse the sequences of ܲܧ to 
obtain one global activity corresponding to all the time he/she stayed in the region. Another 
kind of activity occurs when the agent is moving from one region to another one. Therefore, 
we consider two patterns ܥℎܽ݊݃݁ and ܵݕܽݐ to describe the two types of activity as follows: 
 

 The ܵݕܽݐ pattern characterizes an activity occurring within a single topology region 
like ”at.region.P”, and it is defined as a maximal sub-sequence of ܲܧ with the same 
 :ா݊݅ݐ݅ݏ݊ܽݎܶ

 (3.6) 

 

 The ܥℎܽ݊݃݁ pattern describes the transition of the agent between regions like 
”changing.from.P.to.Q” which is composed of a single ܲܧ: 

ℎܽ݊݃݁ିொܥ = (ܲ → ܳ),						ܲ ≠ ܳ (3.7) 

 PP=Stay PP 
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We define a discovered activity (DA) at a level ݈ as an extracted ܵݕܽݐି  or ܥℎܽ݊݃݁ିொ 
pattern: 

 (3.8) 

 

The process of activity discovery is performed over the three granularity levels (݈ = 1, 2, 3) 
using the three sequences of ܲܧ for three levels of topology. Therefore, based on the 
hierarchy of the scene regions, the discovered activities are also classified to coarse, medium 
and fine and each discovered activity is a sub-activity of an activity at a coarser resolution. 
Figure 3.4 presents an example for discovered activities sDA extracted with the Change  and
Stay  patterns at multiple resolutions. 

 

 
Figure 3.4: Example of discovered activities sDA  (colored segments) extracted with the 

Change  and Stay  patterns at multiple resolutions.  

In the following sections, we replace ܲ − ܳ and ܲ − ܲ by the index ݏ that represents the 
semantic of an activity which are mapped to colours on the graphical interface to categorize 
the activities in the video. Figure 3.5 shows the coloured segments representing the 
discovered activities at three levels of resolution. The same colour corresponds to the same 
activity at each resolution level. 

QPPP
l

QP Change|Stay=DA 
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Definition of Activity Models 

We represent the model of an activity as a tree of nodes that is obtained by merging the set of 
൛ܣܦ௦

ୀଵ,ଶ,ଷൟ (ݏ is the semantics of the activity) and has a hierarchical structure based on the 
three levels of granularity (i.e. ቄܰୀଵ, ൛ ܰ

ୀଶൟ
ଵஸஸ

, ൛ ܰ
ୀଷൟ

ଵஸஸ
ቅ). The tree of nodes 

represents how different activities and sub-activities are connected to each other thanks to a 
set of ܽݏ݁ݐݑܾ݅ݎݐݐ and ܾݑݏ −  ,obtained from the properties such as type, duration ݏ݁ݐݑܾ݅ݎݐݐܽ
etc. In other words, a node ܰ is characterized by ܽݏ݁ݐݑܾ݅ݎݐݐ and ܾݑݏ −  ݏ݁ݐݑܾ݅ݎݐݐܽ
parameters: 
 

 The ܽݏ݁ݐݑܾ݅ݎݐݐ is a set of parameters over the ܣܦ௦ at the current level ݈ that 
characterizes the node ܰ. 

 The ܾݑݏ −  constitutes the set of parameters that characterizes the ݏ݁ݐݑܾ݅ݎݐݐܽ
attributes of the sub nodes  ܰ

ାଵ , where ݅ is the index of the child node of  ܰ . 
 

Learning of Activity Models 

For a selected instances of the same discovered activities ܣܦ௦  (e.g. ݏ = "cooking"), we learn 
the model of activity by constructing a tree of nodes where each node of level ݈ is built from 
the set of discovered activities that are at the same resolution level ݈, ൛ܣܦ௦భ

 , ௦మܣܦ
 , … , ௦ܣܦ

 ൟ 

 

 Figure 3.5: Example of discovered activities (coloured segments) for 4 hours video of one 
person performing everyday activities 
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where ݏଵ, ,ଶݏ … ,  An example of the .(i.e. sub-activities of cooking) ݏ  are parts ofݏ
constructing process of a tree of nodes from three sequences of discovered activities classified 
from the coarser to the finer one is illustrated in Figure 3.5-(a). We construct an independent 
model for each type of discovered activity. In the following subsections, we describe the 
parameters of ܽݏ݁ݐݑܾ݅ݎݐݐ and 	ܾݑݏ −   .ݏ݁ݐݑܾ݅ݎݐݐܽ

The ܽݏ݁ݐݑܾ݅ݎݐݐ of a node: For a node ܰ, we define 3 attributes to describe temporal and 
spatial properties of a node: 

 ܶ݁ݕ: it is adopted from the ܣܦ௦ composing a node. For a node ܰ, ܶ݁ݕே = ೞ݁ݕܶ  

 ݏ݁ܿ݊ܽݐݏ݊ܫ: the amount of training instance of activities composing a node. 

 ݊݅ݐܽݎݑܦ: a Gaussian distribution ܰ(ߤௗ,  ௗଶ) describing the temporal duration of theߪ
training instances. 

 )(  HmicsfLocalDynaHistogramo : is a histogram that characterizes the distance and 
the angle of local motion (we discretize the angles to 8 bins (see Figure 3.6-(b)) that 
describes a histogram built from the set of discovered activities). 

 

 
Figure 3.6: (a) Hierarchical Activity Model (HAM) (b) Histogram of Local Dynamics 

 

The ܾݑݏ −  of a node: The sub-attributes enable us to get information from the ݏ݁ݐݑܾ݅ݎݐݐܽ
child nodes. To compute the sub-attributes of a node, we use the attributes of its child nodes. 
For a node ܰ, we define two sub-attributes named ݉݅݁ݎݑݐݔ௦௨ି௧௩௧௬ and ݁݉݅ݐ −
௦௨ି௧௩௧௬ which aim at describing two properties of the child nodes ܰ݁ݏ݈ܽ݁

ାଵ of ܰ : 
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 ݁ݕܶ ௦௨ି௧௩௧௬: describes the amount of time a child node with the same݁ݎݑݐݔ݅݉ .1
appears. It is represented as a mixture of Gaussians (MOG) mixture of (ߠ௧௬௫௧௨  ) 
with the following parameters: 

 ܭ, is the total number of components (Gaussians), it is equivalent to the 
number of unique ܶ݁ݕs 

 ܱ, is the total number of discovered activities at level ݈ (ܣܦ ). 

 ݓୀଵ,…,, is the prior probability of the component ݍ . It is equivalent to the 
weight of each Gaussian in the MOG. It is computed based on the number of 
appearances of the nodes with the same ܶ݁ݕ: 

 

   
 

Then, ߠ௧௬௫௧௨ = ݓ∑ ,ߤ)ܰ∗   is calculated by the training instances of allߤ ଶ) whereߪ
child nodes with the same  ܶ݁ݕ: 

 

   
 

݁݉݅ݐ .2 −  ௦௨ି௧௩௧௬: represents the temporal distribution of child nodes. For an݁ݏ݈ܽ݁
activity, it describes the expected temporal duration of its sub-activities. ݁݉݅ݐ −
௧௬ߠ) ௦௨ି௧௩௧௬ is also represented by a MOG of݁ݏ݈ܽ݁

௧௦). The parameters of 
݁݉݅ݐ −  .௦௨ି௧௩௧௬݁ݎݑݐݔ݅݉ ௦௨ି௧௩௧௬  are similar to previous sub-attribute݁ݏ݈ܽ݁

 
Recognition of Activity Models 

For a new unseen video dataset, we aim at recognizing activities in an unsupervised way. The 
task is achieved by measuring the similarity between reference activity models that are 
learned for each type of discovered activity using unlabelled training videos and a test activity 
model that is obtained from the discovered activities of the new video. 

First, a new sequence of Feature Chunks is computed for the new video. Second, using three 
levels of topology learned from training videos, we create new ܲݐ݊݁ݒܧ݁ݒ݅ݐ݅݉݅ݎ. Thereby, 
ா݊݅ݐ݅ݏ݊ܽݎܶ are matched with the ܧܲ ா of new݊݅ݐ݅ݏ݊ܽݎܶ  of 	ܲܧ used in training. Third, 
the activity discovery process is performed with the new ܲܧ and a new sequence of 
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discovered activities is computed. Fourth, for each type of discovered activity of the new 
video, an activity model is built as explained in previous section. Finally, we compute a score 
between the new model and learned models and threshold it to classify the activity. 

To compute a similarity score between two activity models, we define a metric in a recursive 
manner. At each level of the model, we calculate a similarity score by computing the 
Euclidean distance between attributes and sub-attributes of the nodes of two models at that 
level and append the similarity score obtained from the finer level. This recursive procedure 
gives us the opportunity to have a similarity score at the root node that measure the similarity 
of the models at all levels. 

3.3  Results & Discussion 
We have tested our unsupervised activity recognition method using both 2D and RGB-D data. 
The RGB data of RGB-D camera are used as images from 2D camera. In the experiments, 10 
videos from the dataset that include semi-guided daily activities are used. 5 videos are used to 
build the models for “looking at bus map”, “watering plant”, “preparing tea”, “talking to the 
phone”, “preparing drugs”, “paying bill”, “watching TV”, and “reading newspaper” actions. 
In training, the models are constructed in an unsupervised way, and then each model is 
manually labelled to have semantic descriptions. The remaining five videos are used for 
testing. In testing, as explained in previous sub-section, a semantic label for each discovered 
activity of the test video is assigned by comparing with the models built from training videos. 
To evaluate the framework, we use the following definitions:  

: Number of activities correctly recognized 

: Number of activities recognized not appearing in the ground truth. 

: Number of non-recognized activities. 

: true positive rate (also called recall rate or sensitivity in some publications) measures 
the proportion of actual positives which are correctly identified as such, it is defined as: 

  − higher is better − 

 

: false discovery rate, is analogous to the TPR, it is defined as: 

 

 − lower is better− 

 

: positive predictive value (equivalent to precision), it is defined as: 

 

veTruePositi=TP

iveFalsePosit=FP

iveFalseNegat=FN

TPR

 FN+TP
TP=TPR

FDR

 TP+FP
FP=FDR

PPV
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 − higher is better− 

 
 

 
Table 3.1: The performance of our unsupervised activity recognition method using 2D and 
RGB-D cameras. Bold values represent the best recognition rate for that action 
 

In Table 3.1, the performance of our approach using 2D and RGB-D data are given. We can 
see that, using either 2D or RGB-D data, we achieve similar level of performance for “talking 
to the phone”, “preparing drugs” and “paying bill” actions. By using 2D data, we are 
successful at recognizing “talking to the phone”, “preparing drugs”, “reading newspaper” and 
“paying bill”. Among them, the first three actions are recognized with 100% true positive 
rate. By using RGB-D data, we can successfully recognize “watering plant”, “looking at the 
bus map”, “talking to the phone”, “preparing drugs”, “watching TV” and “paying bill”. 
Among these only for “paying bill”, we obtain 80% true positive rate. All of the other actions 
are recognized with 100% true positive rate. Following these results, we can say that by using 
RGB-D data, we obtain better results compared to using 2D data, especially for “watering 
plant”, “looking at bus map” and “watching TV” actions.  On the other hand, for “preparing 
tea” and “reading newspaper”, by using 2D data we achieve better results than using RGB-D 
data.  
One of the main reasons of failures in using 2D data arises from the problems in feature point 
detection and tracking. Sometimes, the points are detected in wrong places, therefore the 
global position and local dynamics of the person cannot be obtained accurately. This makes it 
impossible to represent the motion of the person, thereby causes the method either miss or 
give false alarms. In the dataset we have used in our experiments, the field of view of the 
camera is not suitable to observe “watching TV” action. Thus, we obtain 0% true positive rate 
for this action. Similarly, one of the main reasons of failures in using RGB-D data is the 
failures in person detection. Occasionally, our algorithm detects people in wrong places. For 
this reason, either the activities are not missed or wrong activities are recognized (false 
alarms) because of the person detected in a different place.  

 FP+TP
TP=PPV

Using RGB-D data Using 2D data 

  TP FP FN TPR% FDR% PPV% TP FP FN TPR% FDR% PPV% 
watering plant 3 49 0 100 94,23 5,77 1 11 2 33,33 91,67 8,333 

looking at bus map 8 63 0 100 88,73 11,27 5 3 3 62,5 37,5 62,5 

talking to the phone 7 15 0 100 68,18 31,82 7 14 0 100 66,67 33,33 
preparing tea 0 16 2 0 100 0 1 17 1 50 94,44 5,556 
preparing drugs 4 84 0 100 95,45 4,55 4 4 0 100 50 50 

reading newspaper 4 55 2 66,67 93,22 6,78 6 8 0 100 57,14 42,86 
watching TV 5 48 0 100 90,57 9,43 0 7 5 0 100 0 
paying bill 4 62 1 80 93,94 6,06 4 1 1 80 20 80 
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It can be observed that there are many false positives in both approaches, especially using 
RGB-D data. The misleading person detection and tracking triggers this problem. 
Furthermore, in our dataset, the activity zones for some actions are too close to each other. 
For instance, the zone of “looking at bus map” and “watering plant” are too close. Also, they 
are very close to the door in the room. For this reason, sometimes, they are mixed up with 
each other, therefore, we discover actions that did not happen and this creates false positives. 
In order to cope with this issue, we are going to improve our person detection and tracking 
algorithms. In addition, we believe that the local dynamics information we obtain from the 
movement of the person enables us to distinguish activities even when they are in the same 
area of the scene. By using larger training data, we plan to improve the activity models in this 
manner, and thereby decrease the rate of missed activities and false alarms. 

3.4  Conclusion 
In this section, we propose a complete unsupervised framework for discovering, modelling 
and recognizing ADL using a fixed camera in an unstructured scene. This framework includes 
all steps from the low-level processing (person detection and tracking) to the semantic 
interpretation of the motion in the scene, i.e. “preparing tea”. Global and local human features 
are extracted from RGB and Depth data and they are used to learn all the meaningful areas 
(topologies) of the scene in an unsupervised way. Combining global and local features with 
topologies enables us to build primitive events in the video at three levels of resolutions. 
Based on these steps, we have proposed a new model for representing activities which 
benefits from the multiple-resolution input: Hierarchical Activity Model. 
 
This framework has been successfully tested for recognizing ADL by experimenting on 
patients performing daily living activities in a hospital room. Although there are missed 
activities and false, high true positive rates we achieved in the experimental results show that 
the framework is a promising system that can automatically discover, learn and recognize 
ADLs. We believe that our method can be used to study activities in home care applications 
and to perform fast and reliable statistics that can help doctors to diagnose diseases such as 
Alzheimer. In future, we are going to work on decreasing false positive and false negative 
rates by improving our motion and person detection algorithms and by improving our activity 
models using a larger training data. 
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4 Supervised Activity Pattern Recognition in Wearable Video 
This section presents our approach for activity recognition in videos taken form wearable 
cameras. Our work makes three contributions:  

 We demonstrate that visual saliency maps based on geometric-spatio-temporal cues 
[4.3] are a major benefit for distinguishing the location of active objects in egocentric 
videos;  

 We show that analysing the dynamics of a sequence of active objects & context by 
means of temporal pyramids [4.1] becomes a suitable paradigm for activity 
recognition in egocentric videos. However, in this scope, we claim that context can be 
better described by the output of place recognition module rather than by the outputs 
of many non-active object detectors as proposed in [4.1].  

 We provide experimental evaluations on the "subject's point of view" using a publicly 
available dataset and demonstrate benefits of our model for activity recognition. 

 

In this section, we provide a brief description of the approach used in our place and object 
categories recognition algorithms and then present how their outputs are processed by the 
activity recognition module. 
 

4.1  The Approach 

Our activity recognition system takes as inputs the outputs of two proceeding modules in the 
processing pipeline: a) several Active Object detectors, and b) a Place Recognition module. 
Once these two modules are described, we present our particular approach for Activity 
Recognition.  
 

 
Figure 4.1: Processing pipeline for the saliency-based object recognition in first-person 
camera videos 
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4.1.1   Object Recognition 

In our system, we employ several detectors of “active objects” (objects either manipulated or 
observed by the user). From our point of view, identifying these objects becomes a crucial 
step towards the activity understanding in egocentric daily videos. In general, we consider one 
individual detector for each object category although, as shown in the processing pipeline 
presented in Figure 4.1, almost all the processing modules are common for every detector. In 
practice, the nonlinear classification stage is the only step that is specific to each category. We 
have built our model on the well-known Bag-of-Words (BoW) paradigm [4.4] and proposed 
to add saliency masks as a way to provide spatial discrimination to the original Bag-of-Words 
approach. Hence, for each frame in a video sequence, we extract a set of ܰ SURF descriptors 
݀ [4.5], using a dense grid of circular local patches. Next, each descriptor ݀ is assigned to 
the most similar word ݆ = 1…ܸ in a visual vocabulary by following a vector-quantization 
process. The visual vocabulary, computed using a k-means algorithm over a large set of 
descriptors in the training dataset (about 1M descriptors in our case), has a size of V = 4000 
visual words.  

In parallel, our system generates a geometric-spatio-temporal saliency map ܵ of the frame 
with the same dimensions of the image and values in the range [0,1] (the higher the more 
salient a pixel is). The saliency map computation has been explicitly developed for egocentric 
vision for wearable camera setting in the framework of the Dem@Care project and the details 
about the generation of saliency maps can be found in [4.3]. 
We use this saliency map to weight the influence of each descriptor in the final image 
signature, so that each bin j of the BoW histogram ܪ is computed using the next equation: 

ܪ 	= 		 ݓߙ

ே

ୀଵ

	

where the term ݓ = 1 if the descriptor or region ݊ is quantized to the visual word ݆ in the 
vocabulary and the weight ߙ is defined as the maximum saliency value ܵ found in the 
circular local region of the dense grid. Finally, the histogram ܪ is L1-normalized in order to 
produce the final image signature. 

Once each image is represented by its weighted histogram of visual words, we use a SVM 
classifier [4.6] with a nonlinear Chi-Square kernel, which has shown good performances in 
visual recognition tasks working with normalized histograms as the ones used in the BoW 
paradigm [4.7]. Using the Platt approximation [4.8], we finally produce posterior probabilistic 
estimates ܱ௧  for the occurrence of the object of class ݇ in the frame	ݐ. 
 

4.1.2   Place Recognition 

In this section we detail the place recognition module. The general framework can be 
decomposed in three steps. First of all, for each image, a global image descriptor is extracted. 
We choose the Composed Receptive Field Histograms (CRFH) [4.9] since it was proven to 
produce good performances for indoor localization estimation [4.10]. Then a non-linear 
dimensionality reduction method is employed. In our case, we use a Kernel Principal 
Component Analysis (KPCA) [4.11]. The purpose of this step is two-fold: it reduces the size 
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of the image descriptor, alleviating the computational burden of the rest of the framework, 
and it provides descriptors on which linear operations can be performed. Finally, based on 
these features, a linear Support Vector Machine (SVM) [4.6] is applied to perform the place 
recognition, and the result is regularized using temporal accumulation [4.10].   
For the application considered in our work, each video is taken in a different environment. 
Consequently, our module has to learn generic concepts instead of specific ones as it is 
usually the case [4.10]. In this context, we need to define concepts both relevant for action 
recognition and as constrained as possible to obtain better performances. For instance, the 
concept “stove” has probably less variability and may be more meaningful for action 
recognition than the concept “kitchen”. This will be discussed in detail in the experimental 
results section. 

Again, following the Platt approximation [4.8], the output of this module is then a vector Pj
t 

with the probability of a frame ݐ representing the place݆. 
 

4.1.3   Activity Recognition 

Our activity recognition module uses the temporal pyramid of features presented in [4.1], so 
as to allow exploiting the dynamics of user's behaviour in egocentric videos. However, rather 
than combining features for active and non-active objects, we study the combination of active 
objects and places (context) with the aim of modelling activities as sequences of features that 
involve varying manipulated/observed objects and places (e.g., cooking may involve user's 
interaction with various utensils whereas cleaning the house might require a user to move 
around different places of the house).  
 

In particular, for each frame ݐ being analyzed, we consider a temporal neighbourhood Ω௧  
corresponding to the interval [− 

ଶ
, 
ଶ
] around	ݐ. This interval is then iteratively partitioned into 

two sub-segments following a pyramid approach, so that at each level l = 0… 	L − 1 the 
pyramid contains 2 sub-segments. Hence, the final feature of a pyramid with ܮ levels is 
defined as: 

௧ܨ = ቂܨ௧
,ଵ… ௧ܨ,

,ଵ … ௧ܨ,
,ଶ … , ௧ܨ

ିଵ,ଶಽషభቃ	

where ܨ௧
, represents the feature associated to the sub-segment ݉ in the level ݈ of the 

pyramid  and is computed as: 

௧ܨ
, =

2ିଵ

Δ  ௦݂

௦ఢஐ


 

where Ω௧  represents the ݉ temporal neighbourhood of the frame ݐ in the level ݈ of the 
pyramid and ௦݂  is the feature computed at frame ݏ in the video. In the experimental section, 
we will assess the performance of our approach using the outputs of ܭ object detectors 
[Oଵୱ …	Oୱ ], the outputs of ܬ place detectors Pଵୱ…	Pୱ, or the concatenation of both, as features 
௦݂. 
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In our experiments, we have used a sliding window method with a fixed window of size , 
parameter that is later studied in the experimental results section, and a pyramid with ܮ = 2 
levels. Finally, the temporal feature pyramid has been used as input for a linear multiclass 
SVM in charge of deciding the most likely action for each frame. 

4.2  Results 

4.2.1   Experimental Setup 

We have assessed our model in a publicly available ADL dataset [4.1], which contains videos 
captured by a chest-mounted GoPro camera, which is used in Dem@Care project as well on 
20 users performing various daily activities at their homes. This dataset was already annotated 
for 44 object-categories and 18 activities of interest (see Figure 4.2) and we have additionally 
labelled 5 rooms and 7 places of interest.  
 
This dataset is very challenging since both the environment and the object instances are 
completely different for each user, thus leading to an unconstrained scenario. Hence, and due 
to the hierarchical nature of the activity recognition process, we have trained every module 
following a leave-k-out procedure (݇ = 4 in our approach). This approach allows us to 
provide real testing results in object and place recognition for every user, so that the whole set 
can be later used for activity recognition. Furthermore, for activity recognition, the first 6 
users have been used to cross-validate the C parameter of the linear SVM, whereas the 
remainder ones (7-20) have been used to train and test the models following a leave-1-out 
approach. 
 

4.2.2   Object recognition results 

Figure 4.3 shows the per-category and average results achieved by our active object detection 
approach in terms of Average Precision (AP). The mean AP of our approach is 0.11 but, as 
can be noticed from the figure, the performance notably differs from one class to another. 
Main errors in classification are due to various reasons: a) a high degree of intra-class 
variation between instances of objects found at different homes, what leads to poor 
recognition rates (e.g. bed clothes or shoes show large variations in their appearance), b) some 
objects are too small to be correctly detected (dent floss, pills, etc.), and c) for some objects 
that theoretically show a lower degree of intra-class variation (TV, microwave), performance 
is lower than expected since it is very hard for a detector to distinguish when they can be 
considered as “active” in the scene (e.g. a user just faces a “tv remote” or a “laptop” when 
using them, whereas the TV or the microwave are more likely to appear in the field of view 
even when they are not ‘active’ for the user). 
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Figure 4.2: Overview of the 18 activities annotated in the ADL dataset 
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Figure 4.3: Results of object recognition 

 

4.2.3   Place Recognition results 

In this section, we report the results obtained on the ADL dataset for the place recognition 
module. We use a Chi-Square kernel and retain 500 dimensions for the KPCA. We compared 
two different types of annotation of the environment: a room based annotation compound of 5 
classes (bathroom, bedroom, kitchen, living room, outside) and a place based annotation 
compound of 7 classes (in front of the bathroom sink, in front of the washing machine, in 
front of the kitchen sink, in front of the television, in front of the stove, in front of the fridge 
and outside).  
 
We have obtained average accuracies of 58.6% and 68.4%, for the room and place 
recognition, respectively. 
 
Hence, we can conclude that, for this dataset, place recognition is more suitable than room 
recognition. We believe this is due to the fact that the concept of place has a smaller 
variability than the concept of room in the appearance space. Hence, in the following, we will 
use place recognition in our experiments. 

4.2.4   Activity Recognition results 

In this section we show our results in daily activity recognition in egocentric videos. As 
already mentioned, our system identifies the activity at every frame of the video using a 
sliding window, what allows us to compute Average Frame level classification accuracy. To 
this end, we have also included a new class “no activity” associated to frames that are not 
showing any activity of interest. It is also worth noting that the global performance is 
computed by averaging the particular accuracies for each class (rather than simply counting 
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the number of correct decisions) and, thus, adapts better to highly unbalanced sets as the one 
being used (where most of the time there is no activity of interest). 
 

 
Figure 4.4: Activity Recognition Accuracy with respect to the window size  used in the 
analysis 

 
Approach Avg Fr. Acc AvgSeg. Acc 
Our Active Objects 24,2% 40,5% 
Our Places 19,7% 11,1% 
Our Active Objects + Places  26,3% 41,3% 
Pirsiavash et al. [Pirsiavash12] 23% 36,9% 

Table 4.1: Activity recognition accuracy for our approach computed at Frame and Segment 
level, respectively. 

 
In our first experiment, we have studied the influence of the window size . Based on the 
results shown in Figure 4.4 (blue line), we can draw interesting conclusions: on the one hand, 
too short windows do not model the dynamics of an activity, understood in our case as 
sequences of different active objects or places. Oppositely, too long windows may contain 
video segments showing various activities. Although, from our point of view, this fact might 
help to detect several strongly related activities by reinforcing the knowledge about one 
activity by the presence of the other (e.g. washing hands/face and drying hands/hair are 
activities that usually occur following the same temporal sequence), it might also lead to 
features containing too many active objects and places. These features would therefore make 
these frames difficult to assign to a particular activity. In our case, the value that best fits the 
activities in ADL dataset is Δ = 1200 frames, which corresponds to approximately 47 
seconds of video footage. In fact, looking at the cumulative distribution of the activities length 
in the dataset (green line in Figure 4.4), we have found a median value of approximately 1100 
frames, so that the best results in activity recognition are achieved for  values around this 
point. 
 
Secondly, we have also assessed the importance of each feature for recognizing activities. In 
the first column of Table 4.1, we show the results of our approach using either just active 
object or place detectors, and using an early combination of both of them by feature 
concatenation. As one can notice from the results, combining objects and their context (the 
place where they are located) notably improves the performance achieved by simply using the 
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object detectors. Let us note that we have also tested a late fusion scheme that did not lead to 
improvements in the system performance.  
 
Furthermore, for comparison, we also include the results obtained with the software provided 
by the authors of [4.1]. This approach uses the outputs of various detectors of active and non-
active objects implemented using the Deformable Part Models (DPM) [4.2]. Let us note that, 
as mentioned by the authors in the software, results differ from the ones reported [4.1] due to 
changes in the dataset. From the results, and due to the similar classification pipeline of both 
methods, we can conclude that our features are more suitable for the activity recognition 
problem. 
 
Finally, we additionally include results of a segment based evaluation in which ground truth 
time segmentations of the video are available in both training and testing steps. Hence, this 
case simplifies the activity recognition from a category segmentation problem to a simple 
classification problem for each segment. Following the evaluation protocol in [4.1], this case 
lacks the 'no activity' class, so that only video intervals showing activities of interest are taken 
into account. Combining objects and context provides the best performance, which is again 
superior to the one obtained by [4.1]. 
 
These results lead us to conclude that, recognizing activities in egocentric video does not 
require identifying every object in a scene, but simply detect the presence of “active” objects 
and provide a compact representation of the object context. This context has been 
implemented in this work by means of a global classifier of the place. 
 

4.3  Conclusions and Further Work 
In this section we have shown how activity recognition in egocentric video can be 
successfully addressed by the combination of two sources of information: a) active objects 
either manipulated or observed by the user provide very strong cues about the action, and b) 
context also contributes with complementary information to the active objects, by identifying 
the place in which the action is being made. 
 
To that end, an activity recognition method that models activities as sequences of active 
objects and places have been used on a challenging egocentric video dataset showing daily 
living scenarios for various users. Under two different scenarios, we have demonstrated how 
the combination of both objects and context provides notable improvements in the 
performance and that it outperforms state-of-the-art methods using active and passive objects 
representations. 
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5 Ontology Patterns for Behaviour Modelling 
Automated activity recognition has been a major challenge for context-awareness. In many 
application domains though, affording meaningful user-tailored feedback requires more than 
the identification of the user’s ongoing activity. This is particularly relevant in healthcare and 
assisted living applications, where promoting the user’s well-being necessitates a broader 
understanding of user behaviour, including not only what activities are performed, but also 
idiosyncratic and habitual knowledge such as the manner in which an activity is performed 
and recurrent patterns of activities (e.g. bed time routine).  

As described in Section 2.3 several ontology-based approaches have been proposed for 
modelling behavioural aspects aiming to avail of the well-defined semantics and automated 
inference services. However, staying at the level of instances, these efforts fail to provide 
reusable formal models of behaviour, thus hindering interoperability.  
In the following, we present ontology-based patterns for modelling various behavioural 
aspects [5.1] capturing either already known information (e.g. average breakfast duration as 
reported by the PwD or informal carer) or dynamically learned one (e.g. average breakfast 
duration based on Dem@Care monitoring and interpretation). The proposed patterns 
implement the descriptions and situations (DnS) ontology pattern [2.3.32] of DOLCE Ultra 
Lite2 (DUL) and make use of the meta-modelling capabilities of OWL 2, namely punning. 
The latter enables to treat domain activity concepts as instances and hence allows for property 
assertions to be made among activity types. In that way, the proposed behaviour patterns 
enable the representation of contextualised views and afford reusable pieces of knowledge 
that cannot otherwise be directly expressed by the standard ontology semantics. DOLCE 
provides a formal modelling basis and has been used for a number of core ontologies such as 
[5.2][5.3][5.4], while the pattern-oriented approach of DUL provides native support for 
modularisation and extension by domain specific ontologies.  

Currently, six behavioural patterns have been implemented, three for formalising structural 
relations that allow to express the various manners in which a PwD may carry out an activity 
and three for formalising habitual knowledge, such as frequency and duration of activities.  
The rest of the Section is structured as follows. Section 5.1 presents the functional and non-
functional requirements on the ontology-patterns behaviour model. Section 5.2  introduces the 
core activity pattern that extends the DnS pattern that serves as the conceptual base for the 
definition of behavioural patterns, while Sections 5.3 to 5.8 describe the individual behaviour 
patterns and demonstrate their use. 

5.1  Behaviour patterns requirements 
To design and engineer the behavioural patterns, functional and non-functional requirements 
were derived and analysed. These were based on the study of existing ontology-based 
approaches for capturing meta-knowledge and ontology design patterns3, related work on 

                                                
2http://www.loa.istc.cnr.it/ontologies/DUL.owl 
3http://ontologydesignpatterns.org/ 
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ontology-based approaches to the modelling of behaviour aspects, as described in Section 2.3 
and of course on the use case scenarios targeted by Dem@Care. 

5.1.1   Functional requirements 
A key feature of the Dem@Care project is to enable the customised interpretation of PwD 
behaviour and the delivery of appropriately tailored management and support services. To 
accomplish this, the system needs to be aware not only of the activities a PwD is carrying out, 
but also of diversions from its usual behaviour as well as of clinically relevant incoherencies. 
Typical examples of such incoherencies include among others errors related to organisation, 
realisation, sequence and completion aspects [5.4]. 
Organisation errors happen when the patient performs some steps of an activity in an 
inappropriate way. For instance, the patient can use the wrong type of spoon, or even a knife, 
to mix up the ingredients of a receipt. Realisation errors happen when, due to a distraction or 
a memory lapse, the person performs actions that are unrelated with their ongoing activity or 
original goal, or skips some steps of his activity. For example, a patient can put a bowl of 
soup in the microwave oven in order to heat it while forgetting to start the microwave and, a 
few minutes later, eat the soup thinking that it is hot. Sequence errors correspond to some 
disorganization in the course of the activity’s steps. For instance, the patient can try to change 
the television channel without having turned it on beforehand. Completion errors happen 
when the patient is unable to finish the ongoing task, because they stop half ways through it or 
because they indefinitely repeat one or more steps of the task. For instance, a patient may be 
in the process of making tea and opens a kitchen cupboard in order to take a cup, but, instead, 
may begin to repetitively open and close the cupboard. 
To support the recognition of situations like the aforementioned ones, a behavioural model 
should account for a number of aspects pertinent to the various manners in which a PwD may 
carry out activities of daily living, including:  

 the steps (sub-activities) that comprise an activity (e.g. Alice has her tea either plain or 
with milk), 

 temporal/spatial patterns such as sequence patterns (e.g. afternoon rest for Paul 
consists in serving himself a glass of wine, turning on the CD player, and sitting on his 
armchair), 

 initiation and termination patterns (e.g. Lauren starts her breakfast by turning on the 
kettle and completes it by putting the dishes in the dishwasher), 

 information about the typical frequency of a behavioural element (e.g. Lauren has 
three cups of tea daily), 

 information about the typical duration of a behavioural element (e.g. Alice’s dinner 
takes on average an hour), 

 information about how many times an activity is repeated within a certain context (e.g. 
how many times the patient opens and closes the CD player when they try to play 
music). 

5.1.2   Non-functional requirements 
In addition to the afore-described functional requirements, a number of non-functional 
requirements are derived from reported and own experience.  
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 Extensibility. As new developments and functional requirements emerge, the 
behaviour patterns model should be able to include additional aspects.  

 Axiomatisation. To establish a common understanding and ensure interoperability 
through machine accessible semantics, the proposed ontology-based behaviour 
patterns need to be sufficiently formal so that systems can reason about the 
represented knowledge and carry out semantic checks on its validity. 

 Modularity. While the behaviour model needs to capture different aspects of structural 
knowledge, applications will commonly use only portions of it. A modular design 
allows for selecting the parts of the model used.  

 Reusability. The behaviour patterns model shall be able to incorporate existing domain 
ontologies and make use of that domain knowledge rather than requiring remodelling 
it, while supporting reuse of its modules despite the different viewpoints imposed by 
different domains. 

 Separation of concerns. A core model needs to be applicable for arbitrary application 
domains and enable integration and reuse of models of domain-specific knowledge. 
To this end, the domain-independent knowledge in the core model needs to be clearly 
separated from the domain-specific knowledge. 

 
In the following, we describe the proposed ontology-based behaviour patterns and illustrate 
their use. With respect to the aforementioned functional requirements, the composition pattern 
and the specialisation pattern implement the structural relationships between activities, 
allowing in addition for modelling of spatiotemporal information. The boundary pattern 
allows for modelling information regarding the activities that initiate and terminate a given 
behaviour. The frequency pattern and the duration pattern provide for modelling habitual 
frequency and duration information associated with an activity. The repetition pattern 
specialises further the frequency pattern and allows for modelling frequency information with 
respect to specific context (e.g. location). 

5.2  Core Activity Pattern 
The DnS design pattern provides a principled approach to context reification through a clear 
separation of states-of-affairs, i.e. a set of assertions and their interpretation based on a non-
physical context, called a description [2.3.32]. Intuitively, DnS axioms try to capture the 
notion of situation as a unitarian entity out of a state of affairs, with the unity criterion being 
provided by a description. In that way, when a description is applied to a state of affairs, a 
situation emerges.  

In the proposed ontology-based behaviour patterns, we use DnS to formally provide precise 
representations of contextualized situations and descriptions on activity concepts of domain 
ontologies, describing the different activity types and contextual relations that can be 
associated with complex domain activities. The modelling capabilities have been designed 
with a minimum of semantic commitment to guarantee maximal interoperability. As such, the 
behaviour patterns can reuse existing foundational ontologies for modelling different aspects 
of activities, e.g. entities, places, such as SEM [5.5] and Ontonym [5.6]. 
The implementation of DnS in DUL allows the relation of situations and descriptions with 
individuals of the dul:Event and dul:EventType classes, respectively. For example, the Event-
Model-F [5.7] implements a number of instantiations on top of the DnS pattern to describe 
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relations among asserted events (instances of the dul:Event class), such as causality and 
correlation. In contrast, the scope of the core activity pattern is to conceptually describe the 
activity context that defines complex activities at the class level, and not to represent relations 
directly among activity instances. 

classifiesActivity
[allValuesFrom owl:Class]

hasDescription
[allValuesFrom]

ActivitySituation ActivityDescription

ActivityType

defines
ActivityType

[allValuesFrom]
includesActivity
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dul:Agent
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Figure 5.1: Core Activity Pattern 

To this end, the core activity pattern allows the representation of the following activity-related 
conceptualisations, as illustrated in Figure 5.1, where classes belonging to the defined 
behaviour patterns are highlighted in the blue to show the alignment with classes of DUL. 
 Activity situations. An activity situation defines a set of activity classes that are 

involved in a specific pattern instantiation (includesActivity property) and they are 
interpreted on the basis of an activity description (hasDescription property). Each 
situation is also correlated with one user/agent (dul:includesAgent property). 

 Activity descriptions. An activity description serves as the descriptive context of an 
activity situation, defining the activity types (definesActivityType property) that 
classify the domain activities of a specific pattern instantiation, creating views on 
situations.  

 Activity types. Activity types are DUL concepts that classify activity classes, i.e. they 
treat domain activity classes as instances, describing how they should be interpreted in 
a particular situation. These descriptions mainly involve the specification of the 
temporal constraints that characterise the respective contextual activities, reusing the 
temporal property assertions provided by the OWL-Time ontology in terms of the 
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time:TemporalEntity4 class. The dul:hasLocation property of DUL is used to correlate 
an activity type with a location (dul:Place). 

 
Roughly speaking, the definition of a behaviour pattern is specified in two levels of 
granularity: (a) the situation, that provides an abstract description of the behaviour in terms of 
the domain activity types that are involved, and (b) the description, that can be thought as a 
descriptive context that classifies the activity classes of the situation in order to create a view, 
i.e. to define the contextual relations that characterise a specific behaviour. 

5.3  Activity Composition Pattern 
The activity composition pattern enables to formally express behavioural information related 
to the way a PwD carries out complex activities, namely activities that involve two or more 
steps and are defined as the composition of atomic or other complex activities, such as 
making tea or preparing pasta. 
 

ActivitySituation ActivityDescription

ActivityType

Activity
Composition

Composition
Description

hasDescription
[allValuesFrom]

SubActivity

definesActivityType
[min 1]

Derived
Activity

definesActivityType
[exactly 1]

classifiesActivity
[allValuesFrom owl:Class]

Domain Activity Ontology

pattern classcore  cla ss rdfs: subClassOf property restriction

includesActivity
[allValuesFrom owl:Class]

 
Figure 5.2: The Activity Composition pattern 

As shown in Figure 5.2, a composite activity definition is expressed by an 
ActivityComposition that satisfies a CompositionDescription. The situation includes the 
descriptive context that admits the composition, namely the composite activity, its constituent 
activities and their pertinent spatiotemporal correlations. The classes DerivedActivity and 
SubActivity express the complex activity to be inferred and its constituent activities, 
respectively. Temporal correlations among the involved activities are expressed through their 
                                                
4http://www.w3.org/2006/time 
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associated DerivedActivity and SubActivity classifications that subsume the ActivityType 
class, and thus the time:TemporalEntity concept (see Figure 5.1).  
Using the proposed pattern, one can express, for example, that making tea amounts for Alice 
to boiling water, place tea bag in cup and adding sugar in that sequence in kitchen (see Figure 
5.3), while for Paul making tea includes also the addition of milk. 

 

dul:hasLocation

_:a

tea_comp1

Activity
Composition

Composition
Description

tea_desc1

_:b _:d

SubActivity

MakeTeaBoilingWater AddSugar

_:c

definesActivityType

classifiesActivity classifiesActivity

time:before

classifiesActivity

hasDescription

time:before

PlaceTeaBag

classifiesActivity

kitchen

alice

DerivedActivity

dul:includesAgent

includesActivity

pattern class doma in a ctivity class individua l
rdf: type

property a ssert ion
rdfs: subCla ssO f

 
Figure 5.3: Example instantiation of the composition pattern 

5.4  Activity Specialisation Pattern 
The activity specialisation pattern enables to formally express behavioural information related 
to the way a PwD carries out complex activities, but unlike the activity composition pattern, 
the specialisation pattern refers to complex activities that are derived as further specialisations 
of a given atomic or other complex activity.  

As shown in Figure 5.4 a definition of this type is expressed by an ActivitySpecialisation that 
satisfies a SpecialisationDescription. The situation includes the descriptive context that admits 
the specialisation, namely the activity that is subject to further specialisation, one or more 
associated activities, and their pertinent temporal correlations. The classes SpecialisedType 
and SpecialisationType express the asserted and derived activity respectively, while the class 
SpecialisationContext allows expressing activities comprising the descriptive context. 
Temporal correlations among activities are expressed through their associated 
SpecialisedActivity, SpecialisationType and ContextSpecialisation classifications that 
subsume the ActivityType class, and thus the time:TemporalEntity concept. 
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Figure 5.4: Activity Specialisation Pattern 

Figure 5.5 illustrates an example instantiation of the specialisation pattern for 
NightBathroomVisit. Intuitively, the instantiation of the pattern defines that an InBathroom 
instance is further specialised as a NightBathroomVisit, if it is temporally contained in a 
NightSleep activity (the dul:includesAgent and dul:hasLocation properties are omitted for 
simplicity). 

 
 

Figure 5.5: Example instantiation of the Activity Specialisation pattern 
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5.5  Activity Boundaries Pattern 
The activity boundaries pattern, shown in Figure 5.6, enables to formally express behavioural 
information related to the way a PwD carries out complex activities, with respect to the 
initiating and terminating activities that characterise a complex activity.  

Formally, an ActivityBoundaries situation includes one instance of an activity that is 
classified by the concept BoundedActivity, one instance of an activity that is classified as 
InitialActivity and one instance of an activity that is classified as TerminalActivity. 
Accordingly, an ActivityBoundaries situation satisfies a BoundaryDescription that defines the 
concepts BoundedActivity, IntialActivity and TerminalActivity for classifying the reference 
activities, i.e. the activity for which start and end information is provided, and its respective 
initiating and terminating steps, respectively.  

ActivitySituation ActivityDescription

ActivityType

Activity
Boundaries

Boundary
Description

hasDescription
[allValuesFrom]

Terminal
ActivityInitialActivity

classifiesActivity
[allValuesFrom owl:Class]

Domain Activity Ontology

patte rn classcore cla ss rdfs: subCla ssO f property restriction

includesActivity
[allValuesFrom owl:Class]

Bounded
Activity

definesActivityType
[exactly 1]

 
Figure 5.6: The Activity Boundaries pattern 

Figure 5.7 illustrates an example instantiation of the boundaries pattern, assuming that for a 
given PwD making breakfast starts with turning on the kettle and completes with putting the 
dishes in the dishwasher (the dul:includesAgent and dul:hasLocation properties are omitted 
from the figure for simplicity). If there are more than one initiation-termination patterns, they 
can be captured through additional BoundaryDescription instances. 
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Terminal
Activity
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Figure 5.7: Example instantiation of the Activity Boundaries pattern 

5.6  Activity Repetition Pattern 
The activity repetition pattern allows expressing the number of repetitions of certain 
activities, within the context of a complex activity (e.g. how many times the PwD interacts 
with given objects during the preparation of a meal).  

ActivitySituation ActivityDescription

ActivityType

ActivityRepetition Repetition
Description

hasDescription
[allValuesFrom]

Repeated
Activity

definesActivityType
[min 1]

Repetition
Context

classifiesActivity
[allValuesFrom owl:Class]

Domain Activity Ontology

pattern classcore  cla ss rdfs:subCla ssO f property restriction

definesActivityType
[exactly 1]

value
[exactly 1]

xsd:integer

includesActivity
[allValuesFrom owl:Class]

 
Figure 5.8: The Activity Repetition pattern 
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As shown in Figure 5.8, an ActivityRepetition situation includes one instance of an activity 
that is classified as a RepetitionContext concept, namely the complex activity context within 
which we examine the repetition of activities, and one or more instances that are classified as 
RepeatedActivity and correspond to the activities that are being repeatedly performed. The 
number of times that an instance of the RepeatedActivity is performed is captured through the 
datatype property value. Accordingly, an ActivityRepetition situation satisfies a 
RepetitionDescription that defines the concepts RepetitionContext and RepeatedActivity. 

The motivation behind this pattern is to allow for modelling already known behavioural 
incoherencies in order to monitor their evolution in the course of time. Figure 5.9 illustrates 
an example instantiation of the repetition pattern, capturing a situation where during breakfast 
preparation, the kettle is turned on 5 times (the dul:includesAgent and dul:hasLocation 
properties are omitted from the figure for simplicity). 

_:a

breakfast_rep

Activity
Repetition

Repetition
Description

breakfast_desc2

pa ttern class doma in a ctivity cla ss individual

rdf:type

property a ssertion
rdfs:subCla ssOf

_:b

Repeated
Activity

MakeBreakfastKettleOn

definesActivityType 

classifiesActivityclassifiesActivity

hasDescription

Repetition
Context

includesActivity

value 5

 
Figure 5.9: Example instantiation of the Activity Repetition pattern 

5.7  Activity Frequency Pattern 
The activity frequency pattern allows for modelling the frequency of an activity. For example, 
it can be used to describe how many times the PwD visits the bathroom during a day or how 
many times she goes out in a month. 

As shown in Figure 5.10, an ActivityFrequency situation includes one instance of an activity 
that is classified as a FrequencyContext concept, namely the activity whose frequency is 
described, two property assertions, period and value, that express the timescale (daily, 
weekly, monthly) and the frequency, respectively. Accordingly, an ActivityFrequency 
situation satisfies a FrequencyDescription that defines the concept FrequencyContext.  



FP7-288199 
D5.3 – Behavioural Profile Learning 

 Page 60 
 

 
 

period
[exactly 1]

ActivitySituation ActivityDescription

ActivityType

ActivityFrequency Frequency
Description

hasDescription
[allValuesFrom]

Frequency
Context

definesActivityType
[exactly 1]

classifiesActivity
[allValuesFrom owl:Class]

Domain Activity Ontology

pattern classcore  cla ss rdfs:subCla ssO f property restrict ion

value
[exactly 1]

xsd:integer

Period
{daily, weekly, 

monthly}

includesActivity
[allValuesFrom owl:Class]

 
Figure 5.10: Activity Frequency Pattern 

An example instantiation of the pattern illustrating the frequency of meals per day is shown in 
Figure 5.11 (the dul:includesAgent and dul:hasLocation properties are omitted from the figure 
for simplicity). 
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hasDescription
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Figure 5.11: Example instantiation of the Activity Frequency pattern 
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5.8  Activity Duration Pattern 
The activity duration pattern allows for the association of descriptive contexts to domain 
activities relevant to the duration. For example, it can be used to describe how long it usually 
takes the PwD to finish a meal or to take a bath. 

 

time:hasDuration
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[exactly 1]
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ActivityDuration Duration
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Duration
Context
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includesActivity
[allValuesFrom owl:Class]

time:Duration
Description

 
Figure 5.12: The Activity Duration pattern 

As shown in Figure 5.12, an ActivityDuration situation includes one instance of an activity 
that is classified as a DurationContext concept, namely the activity whose duration is 
described and a property assertion, namely time:hasDurationDescription, to express the actual 
duration using the OWL Time vocabulary. Accordingly, an ActivityDuration situation 
satisfies a DurationDescription that defines the concept DurationContext.  
An example instantiation of the pattern illustrating the normal duration of a meal is shown in 
Figure 5.13 (the dul:includesAgent and dul:hasLocation properties are omitted from the figure 
for simplicity). 
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Figure 5.13: Example instantiation of the Activity Duration pattern 

5.9  Discussion and Future Work 
In this Section we presented an ontology-based pattern-oriented approach for the formal 
modelling of user behavioural aspects. We defined a core activity pattern that extends DnS 
and provides the conceptual basis for structuring the individual behaviour pattern modules 
and six specialised patterns that allow for modelling the manner in which activities are carried 
out (e.g. sequence information, start/end activity patterns) as well as habitual information in 
terms of frequency, repetition and duration information.  

The adopted DnS pattern-oriented implementation provides native support for modularisation 
and extension by domain specific ontologies (e.g. domain activity ontologies, routine 
ontologies). Moreover, alignment with the foundational ontology DUL provides a further 
basis for future extensions; in addition, adopting the formal semantics of the foundational 
ontology, the more specific semantics of the concepts and relations defined in the proposed 
pattern-based behaviour model can be validated. 

In addition to serving as formal, reusable models for capturing user behaviour, the defined 
patterns can be also utilised for behaviour recognition purposes, as the patterns capture the 
contextual conditions and the spatiotemporal relations that characterise complex activities. 
The adopted DnS and DUL compliant design principles, enable to reuse the encapsulated 
semantics across applications with similar scope but different implementation frameworks, by 
translating the pattern-based models into the respective framework language.  
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Figure 5.14: SPARQL generation and execution framework 

 
In Dem@Care for instance, a SPARQL-based implementation is followed by the Semantic 
Interpretation (SI) component [5.8]. As depicted in Figure 5.14 that illustrates the abstract 
architecture of the recognition framework, the semantics of the Dem@Care Event/Entity 
ontology [5.9] for representing domain events/activities and the semantics of the instantiated 
patterns, e.g. the property restrictions, sub-properties, inverse properties, etc. are first handled 
by an ontology reasoner, which in the SI implementation corresponds to the OWLIM 
ontology reasoner [5.10]. The ontology model is then used by a SPARQL Generator to 
dynamically generate SPARQL rules, based on the provided pattern instantiations.  
 
In the case of the specialisation pattern for example, the activity classes that are classified by 
SpecialisationContext are used to define the triple patterns that match the corresponding 
activity instances in the WHERE clause. Additionally, the SpecialisationType that classifies 
the class of the specialisation is used to define the triple patterns in the CONSTRUCT clause 
that specify the additional class type of the specialised instance. Figure 5.15 shows the 
SPARQL rule that is generated for the recognition of specialisation pattern instantiation 
example of night bathroom visit that was presented in Section 5.4. 
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1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 

CONSTRUCT{ 
    ?ib a :NightBathroomVisit 
} 
WHERE { 
    ?be a :BedExit ; 
  :hasAgent ?pwd ; 
  :startTime ?be_start ; 
  :endTime ?be_end . 
 ?ib a :InBathroom; 
  :hasAgent ?pwd ; 
 :startTime ?ib_start . 
    FILTER (:contains(?be_start, ?be_end, ?ib_start)) . 
    FILTER NOT EXISTS {?ib a :NightBathroomVisit . } . 
} 

Figure 5.15: SPARQL rule for deriving NightBathroomVisit instances 

As noted in D5.2 [5.8] however, in the first version of SI the focus had been on the 
aggregation and semantic correlation of the descriptions extracted from the analysis 
components of the Dem@Care system, assuming that perfect information is available and 
without taking into account uncertain, missing information and conflicts. Currently, the use of 
patterns is investigated under more flexible reasoning schemes that will allow taking into 
account for the uncertainty present in the input observations, including temporal 
incoherencies, missing information, and erroneous analysis results. First results will be 
reported in the upcoming deliverable D5.4. 
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6 Conclusions 

This deliverable has presented our algorithms for supporting behavioural profile learning and 
modelling in the scope of Dem@Care project. The contributions refer to an unsupervised 
framework for discovering, modelling and recognising ADL using a fixed camera, a 
supervised activity recognition approach for egocentric video and ontology-based patterns for 
capturing high-level behaviour aspects.   

More specifically, we have proposed a complete unsupervised framework for discovering, 
modelling and recognising ADL using a fixed camera. The framework goes from low-level 
processing to semantic interpretation of the motion in the scene, i.e., from person tracking to 
inferring “preparing tea” action. Global and local human features are extracted from RGB and 
Depth data and they are used to learn all the meaningful regions of the scene (topologies) in 
an unsupervised way. Combining global and local features with topologies enables us to build 
primitive events in the video at three levels of resolutions. Based on these steps, we have 
proposed a new model for representing activities: Hierarchical Activity Model which benefits 
from the multiple-resolution input. This framework has been successfully tested at 
recognizing ADL by experimenting on patients performing semi-guided daily activities in a 
hospital room. We have tested our unsupervised activity recognition method using both 2D 
and RGB-D data. Although there are some missed activities due to failure in detecting 
motion, the experimental results show that the framework is a promising system that can 
automatically discover, learn and recognize ADL. We believe that our method can be used to 
study activities in home care applications and to perform fast and reliable statistics that can 
help doctors to diagnose diseases such as Alzheimer. As future work we plan to work on 
decreasing false positive and false negative rates by improving our motion and person 
detection algorithms, while continuing to evaluate this approach into a larger population of 
Dem@Care dataset. 

Furthermore, a supervised activity recognition approach for egocentric video has been 
presented. This approach has shown very promising results with respect to the combination of 
two sources of information, namely active objects and location context. The active objects, 
either manipulated or observed by the user, provide very strong cues about the action, while 
the context contributes with complementary information by identifying the place in which the 
action is being made. Briefly, the proposed method models activities as sequences of active 
objects and places. An evaluation is presented for two different scenarios, where the 
combination of objects and context provides notable improvements in the recognition 
performance and outperforms state-of-the-art methods which use active and passive objects 
representations. 
 
Finally, an ontology-based pattern-oriented approach for the formal modelling of user 
behavioural aspects has been presented. We defined a core activity pattern that extends DnS 
and provides the conceptual basis for structuring the individual behaviour pattern modules 
and six specialised patterns that allow for modelling the manner in which activities are carried 
out (e.g. sequence information, start/end activity patterns) as well as habitual information in 
terms of frequency, repetition and duration information. Next steps include the evaluation of 



FP7-288199 
D5.3 – Behavioural Profile Learning 

 Page 67 
 

 
 

the proposed approach within the first Dem@Care pilot context and the development of 
algorithms for their automated population and enrichment. Population refers to the learning of 
the pattern descriptions that define a given behaviour situation, namely the contextual 
constraints pertinent to a behaviour, e.g. making tea consists of turning on the kettle, then 
placing the tea bag in the cup, adding water and finally adding sugar. Enrichment on the other 
hand refers to the update and evolution of the behaviour situation per se, e.g. making tea now 
involves the addition of milk and not of sugar. Another direction would be to explore the use 
of behaviour patterns for activity recognition purposes. 
 

The proposed approaches will be further evaluated in their combined form for the patient 
health care assessment. This evaluation would address the following questions: does the 
fusion of these approaches provide a richer behavioural context for the assessment of health 
care status?  If yes, at what level should these approaches be combined? For instance, at 
assessment level by concurrently applying all the approaches, and then fusing their output at 
the end, or by only combining the most significant internal indicators of each approach on a 
single assessment. In this quest, the ability to capture in a formal manner patterns of higher-
level behavioural aspects (e.g. the manner in which an individual makes his/her morning tea) 
and their dependencies with low-level behavioural traits (e.g. the use of milk or not) would 
enable an additional level of PwD-tailored assessment, focusing on the long-term monitoring 
and assessment of the behaviour. 
 


