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Executive Summary 

The goal of multi-parametric behaviour interpretation in the Dem@Care project is to 

recognise the behaviour of the person with dementia (PwD) and discern traits that have been 

identified by the clinicians as relevant for diagnostic, status assessment, enablement and 

safety purposes. To this end, the information made available by WP3 and WP4 regarding 

physiological and lifestyle characteristics, as well as information regarding activities of daily 

living, is fused and aggregated in WP5 to derive high-level interpretations and decision 

support tasks.   

The first version (v1) of the multi-parametric interpretation framework was presented in D5.2 

[19], outlining the basic methods that were adopted by the two core modules of the 

framework, namely the Complex Activity Recognition (CAR) and Semantic Interpretation 

(SI) components. More specifically, CAR serves for identifying complex activities whose 

modelling is grounded on information at the level of person posture and location, whereas SI 

addresses situations that require encapsulating pieces of information of higher abstraction.  

This document reports on the second version (v2) of the multi-parametric behaviour 

interpretation framework. It reviews state-of-the-art approaches relevant to the interpretation 

objectives of WP5 and proceeds by describing the extensions that have been implemented for 

supporting reasoning under uncertainty and handling incomplete and noisy input. The report 

closes by elaborating on further functional extensions to v1, such as the support of 

questionnaire-related data and the incorporation of a Complex Event Processing engine to 

provide basic real-time interpretation services, and with a discussion of future directions.  
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1 Introduction  

Sensor data are inherently imperfect. Inaccuracies may frequently arise, due to erroneous 

and/or missing sensor readings. Furthermore, when data is retrieved from multiple sources, 

components and modalities, ambiguities and conflicts may also arise. Under these 

circumstances, modelling and reasoning need to provide the means to cope with such 

imperfections and allow detecting possible errors, gracefully handling missing values, and 

deriving plausible conclusions, assessing the validity of available sensor data. 

A significant challenge in activity recognition is the ability to identify and recognise the 

context signifying the presence of complex activities. As mentioned, an important factor to 

take into consideration is that contextual information is typically collected by multiple sensors 

and complementary modalities. For example, RGB-D video streams are used in WP5 to detect 

activities based on information regarding posture and location. In parallel, videos captured 

from wearable cameras are used in WP4 to detect the objects a person interacts with and 

his/her location that are further fused in WP5 to derive complex activities. Therefore, each 

sensing modality is used in a different way by each module, generating information from a 

different perspective. The challenge is to effectively fuse multiple sources of heterogeneous, 

noisy and potentially inconsistent information in a way that provides accurate and useful 

outputs. 

The first version of the multi-parametric interpretation framework was presented in 

deliverable D5.2 [19], outlining the basic methods that were adopted by the two core modules 

of the framework, namely the Complex Activity Recognition (CAR) and Semantic 

Interpretation (SI) components. CAR recognises complex activities whose modelling is 

grounded on information at the level of person posture and location, whereas SI addresses 

situations that require encapsulating pieces of information of higher abstraction using rules.  

This document reports on the second version of the multi-parametric behaviour interpretation 

framework describing the extensions that have been implemented to further address the 

medical ambient intelligence interpretation requirements. Section 2 provides an overview of 

the functionality provided in v1 and outlines the extensions implemented in v2, while Section 

3 reviews state-of-the-art approaches relevant to the interpretation objectives of WP5. In 

Section 4, a probabilistic framework is presented that extends the generic constraint-based 

ontology language for event modelling in CAR. The framework is intended to overcome the 

deterministic nature of the constraint-based approach by handling uncertainty from low-level 

data, and consequently, being less sensitive to small deviations of the values on which the 

constraints are conditioned. A probabilistic activity recognition approach is presented in 

Section 5 that focuses on the management of uncertainty when fusing places and objects 

detected from wearable camera. In order to further handle the intrinsic challenges in multi-

sensor fusion environments, such as imperfect information, noise, conflicts and inaccurate 

temporal correlations, a knowledge-driven fusion framework is described in Section 6 based 

on loosely coupled domain activity dependencies. The approach is based on the definition of 

context connections, i.e. links among relevant groups of observations that signify the presence 

of complex activities. Finally, further functional extensions to v1 are described in Section 7, 

such as the support of questionnaire-related data and the incorporation of a Complex Event 

Processing engine to provide basic real-time interpretation services. Section 8 concludes the 

deliverable discussing next steps. 
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2 Functionality Overview  

In this section we summarise the functionality provided in the first version (v1) of the multi-

parametric behaviour interpretation framework and we elaborate on the extensions that have 

been implemented in the second version (v2). 

2.1 Overview of v1 Functionality  

The first version of the multi-parametric behaviour interpretation framework consists of two 

components: the Complex Activity Recognition (CAR) component and the Semantic 

Interpretation (SI) component. The developed components support interpretation tasks at 

different levels of granularity. More specifically, CAR serves for identifying complex 

activities whose modelling is grounded on information at the level of person posture and 

location. The activity recognition task is supported by a hierarchical model-based approach 

that uses a generic constraint-based ontology language to describe event models in terms of a-

priori knowledge of the scene (i.e. contextual objects and zones) and primitive events detected 

from RGB-D video streams (e.g. postures). CAR focuses primarily on the recognition of: 

 The position of PwD with respect to predefined zones of interest and their moving 

from one zone to another (e.g. person inside the office desk zone)  

 Elementary states and activities using posture and localisation information (e.g. person 

bending) 

 Complex states and activities (e.g. person using office desk).  

Figure 2-1 presents the model that describes the activity             . The activity is 

detected whenever the person is inside the              zone for more than 1 second. 

In turn, the primary focus of SI is on the recognition of: i) complex situations by fusing the 

descriptions extracted by the various modules of the system (e.g. night bathroom visit after 

the person has gone to sleep), ii) functional problems as defined by clinicians (e.g. nocturia 

problem in case of more than two bathroom visits during the night and after the person has 

gone to sleep), and iii) summaries of key attributes of PwD behaviour with respect to the 

functional areas considered (e.g. for sleep, the number of awakening during night sleep and 

the number of naps the preceding daytime). SI espouses a hybrid approach that combines 

ontology- and rule-based reasoning. An OWL 2 ontology is used to model the domain 

CompositeEvent(PrepareDrink, 
  PhysicalObjects((p1 : Person), (z1 : Zone)) 
  Components((c1: PrimitiveState Person_Inside_Zone_UseTeaCorner(p1, z1))) 
  Constraints((duration(c1) >= 1)) 
  Alarm ((Level : URGENT)) 
) 
 
PrimitiveState(Person_Inside_Zone_UseTeaCorner, 
    PhysicalObjects((p1 : Person), (z1 : Zone)) 
    Constraints ((p1->Position in z1->Vertices) 
  (z1->Name = UseTeaCornerZone)) 
    Alarm ((Level : NOTURGENT))                   
) 
 

Figure 2-1. Activity model for PrepareDrink  
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concepts (activities, situations, problems, etc.); SPARQL rules are used to enhance typical 

ontology-based reasoning with complex activity and problem detection, temporal reasoning 

and incremental knowledge updates.  

Figure 2-2 presents the SPARQL rule that is used to detect the            activity. The rule 

combines (fuses) the result of CAR regarding the preparation of a drink and tea-related 

objects detected from the wearable camera in WP4. Similar SPARQL rules have been defined 

for the recognition of situations that indicate problems or possibly problematic behaviours 

that need to be highlighted to the clinician, e.g. a nocturia problem, and for aggregating and 

summarising the results offering a single point for collection of the PwD‟s contextual 

information. 

2.2 Overview of v2 Functionality 

The second version of the multi-parametric behaviour interpretation framework in WP5 

extends the functionality provided in v1 with respect to the following directions: 

CONSTRUCT{ 
    ?new a event:PrepareTea; 
        event:startTime ?ta_start ; 
        event:endTime ?ta_end ; 
} 
WHERE { 
   ?ta a event:PrepareDrink ; 
        event:startTime ?ta_start ; 
 event:endTime ?ta_end . 
  
    ?obj1 a event:UseObject ; 
        event:startTime ?obj1_start ; 
 event:endTime ?obj1_end ; 
 event:relatedToObject event:Teabag.   
 
    ?obj2 a event:UseObject ; 
 event:startTime ?obj2_start ; 
 event:endTime ?obj2_end ; 
 event:relatedToObject event:Kettle. 
 
    ?obj3 a event:UseObject ; 
 event:startTime ?obj3_start ; 
 event:endTime ?obj3_end ; 
 event:relatedToObject event:Teabox.  
       

FILTER(cf:intervalIntersect(?ta_start, ?ta_end, ?obj1_start, ?obj1_end)). 
FILTER(cf:intervalIntersect(?ta_start, ?ta_end, ?obj2_start, ?obj2_end)). 
FILTER(cf:intervalIntersect(?ta_start, ?ta_end, ?obj3_start, ?obj3_end)). 

 
    BIND (cf:newURI(?ta, "SEMI_TEA", str(anon:)) as ?new).     
    FILTER NOT EXISTS {?new a [] . }. 
} 

Figure 2-2. SPARQL rule for detecting the PrepareTea activity 
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Uncertainly handling in event modelling: Uncertainty is present at different levels of the 

event modelling task, from the low-level data used as input (e.g. person dimension and 

position) to the intra-class variation of event models themselves (e.g. due to person-to-person 

differences when performing an event; event intra-class variation). We extend the current 

deterministic constraint-based approach for event modelling by proposing a probabilistic 

framework to handle uncertainty. In Section 4 we described the first part of this framework 

focusing on constraints based on low-level data and small differences in conditioned values 

that may be attributed to person-to-person differences when performing activities. 

Probabilistic fusion of objects and locations: The recognition of concepts such as activities 

is best accomplished using classifiers, which provide the detection and recognition of activity 

related event. Since activity recognition is a difficult task, the classifier outputs can be noisy. 

Thus it is important to associate uncertainty measures to the detected events. We present in 

Section 5 a method for providing an evaluation of the uncertainty of the results obtained from 

activity recognition by fusing objects and location. It extends the classification approach by a 

confidence measure that transforms recognition results into probabilistic events suitable for 

reasoning under uncertainty. 

Context-based high-level fusion: Due to the intrinsic characteristics of pervasive 

environments in real-world conditions, such as imperfect information, noise, conflicts or 

inaccurate temporal correlations, the use of strict contextual constraints to fuse information is 

not always a practical and flexible solution. Moreover, many activities are carried out 

differently even by the same person, e.g. the kettle during the make tea activity may be turned 

on before or after taking out a cup from the cupboard. Thus, the use of strictly structured 

background knowledge relevant to the order of activities or their temporal boundaries is not 

always able to effectively capture and reason about the context. We present in Section 6 the 

implementation of a fusion approach that detects complex situations based on loosely coupled 

domain activity dependencies rather than on strict contextual constraints.  

Questionnaires: Questionnaires is an important tool for obtaining user-reported data about 

problems in the daily life, for example, mood and sleeping problems. We describe in Section 

7.1 the knowledge structures and analysis procedures that have been developed for storing 

and calculating the scores of the questionnaires used in Dem@Care. 

Complex Event Processing: Taking into account the fact that temporal relationships and 

real-time processing is of great importance in activity detection, we describe in Section 7.2 

the incorporation of a Complex Event Processing engine in WP5. The purpose of the CEP 

engine is currently to provide real-time contextualised support of the patient via the coupling 

of the information made available through CAR with patient profile knowledge. 



FP7-288199 

 D5.4 - Multi-Parametric Behaviour Interpretation v2 

 
Page 14 

 

 

3 Related Work 

This section reviews state-of-the-art approaches regarding reasoning under uncertainty and 

handling incomplete and noisy input for activity recognition and multi-sensor fusion in 

pervasive environments. 

3.1 Uncertainty Modelling for Model-Based Event Detection 

Automatic Event detection has become a very active area of research in the past years 

[27][20][48]. Event detection approaches can be divided into two main approaches: 

probabilistic approaches and description-based approaches. Main probabilistic approaches 

ranged are Bayesian Networks and Hidden Markov Models. Their main characteristic is to 

explicitly model the uncertainty of events. Bayesian Network have been applied to the 

detection of event such as person interaction [48] such as „shake hands‟, events on parking 

lots [43], traffic monitoring [37], and detection of left luggage [39]. However, Bayesian 

Networks are not appropriated to model the temporal component of events. An alternative to 

them is the of HMM and its extensions [47][25][11] for time representation.  

Model-based approaches have been largely used to detect activities for few decades, as they 

are suitable to for modelling and detecting high-level events, as they easily incorporate human 

knowledge into the models and require much less training data [47][44][58]. Constraint 

Satisfaction Problem (CSP) has been applied to model events as constraint networks [54]. Cao 

et al. [8] have proposed a model-based approach for older people monitoring whereas the 

human body context (e.g., sitting, standing, walking) and the environment context are 

described in function of event models. Person body context data is provided by a set of 

cameras, while the environmental context is obtained of accelerometers attached to objects of 

daily living (e.g., TV remote control or doors use). A deterministic rule-based engine is used 

for reasoning and combining both context types. Zouba et al. [74] have evaluated a video 

monitoring system at the identification of activities of daily living of older people on a model 

apartment equipped with home appliances. Environmental sensors (pressure, contact) change 

of state was combined to video-based events using a hierarchical model-based approach. 

Banerjee et al. [2] have presented a fuzzy inference approach to reason over features extracted 

from a RGB-D camera to monitor fall events in hospital rooms. 

Although it has its advantages, the deterministic nature of model-based approaches still lack a 

convenient mechanism to handle uncertainty and compensate for the failures of low-level 

components (e.g., people detection and tracking on a computer vision pipeline). Approaches 

combining logic and probabilistic reasoning have been proposed to overcome these two 

limitations. For instance, Ryoo and Aggarwal [59][60] have made use of the concept of the 

hallucinated time intervals, as in [42], to handle uncertainty. Tran and Davis [68] have 

adopted probabilistic graphical model, Markov logic networks (MLNs), to probabilistically 

infer events in a parking lot. In [7] a probabilistic approach is presented using weighted event-

logic formulas to represent the probabilistic constraints among events. However, they did not 

handle low-level uncertainty but only consider the detection of primitive events of a 

basketball game. Kwak et al. [38] have made use of constraint flows to compose a complex 

event from the combination of primitive events.  

Although the combination of logic and probability techniques has been a promising 

alternative to compensate for deterministic nature of model-based approach, there is still not a 
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standard formalism that addresses the uncertainty of the whole hierarchy of events in model-

based approaches. 

The review of state of the above has been based on the published works of Romdhane et al. 

[55] and Crispim-Junior et al. [16]. 

3.2 Probabilistic Activity Recognition  

Typical recognition of activities relies on classifiers, such as Support Vector Machines 

(SVM), which produce prediction scores. The design of successful classifiers in such 

applications relies on a combination of choices related to features, classifier architecture, 

parameters and various pre- and post-processing to take into account real data specificities 

such as noise, outliers and prior information such as regularization information. In typical 

scenarios, the complexity of the classifier system precludes the interpretation of the results as 

probabilistic elements, as they are defined on an arbitrary axis that is suitable for deciding of a 

best class, but not to associate a probabilistic interpretation to it. In this section, our objective 

is to study the problem of assigning appropriate probabilities to activity recognition and their 

suitability as probabilistic data within WP5. This problem corresponds to a calibration 

problem [30]. 

We consider here a two-class classifier that assigns to each observation xk, in a multi-

dimensional space, a predicted binary label yn in {0, 1}. In practice the prediction is based on 

the thresholding of the result of a decision function sn = f(xn), which we will call the classifier 

score. The calibration problem consists in finding a transformation pn=g(sn) of these scores 

into a value in the interval [0,1] such that the result can be interpreted as the probability 

pk=P(yk=1|xk) that of a true positive conditioned on the observed sample. Therefore, the 

values need to have reasonable properties to be used in a fusion approach with other sources 

of information.  

Some simple forms of calibration rely on ad-hoc approaches [57] to associate probabilities or 

on simple normalization of the values to the [0, 1] interval.  

A more principled approach is to adopt a Bayesian point of view with a classifier that directly 

produces probabilities according to a generative model. Such classifiers can be used in a 

layered fashion, such as a final Bayesian classifier taking the scores of the first layer classifier 

as input, and producing the likelihoods p(xk|yk=1) and p(xk|yk=0) of a sample xk to be positive 

or negative, and using Bayes rule to infer the a posteriori probability 
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Another approach is to train the mapping from scores to probability directly. The constraints 

on the form of the transformation and the criterion used to find the optimal one differentiate 

the approaches. One of the most common approaches, Platt scaling [51], fits a sigmoid 

function to the scores. 

This shape is the theoretical transformation to use when the distribution of scores are two 

Gaussians, but may not be optimal in many other cases [46]. A more generic transformation 

can be trained by binning, which is the assignment of fixed output probabilities to a set of 

predefined intervals on the score values. The choice of the number of intervals needs to be 

defined using cross-validation. The more general isotonic regression [73] tries to find a non-

parametric g, with the only constraint that it is monotonically increasing. It was extended in 
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[71] to include regularization parameters and multi-classifier fusion. Since the constraint is 

less stringent than for simpler models, such models are more prone to over fitting that the 

Platt model for instance [73]. Depending on the application, the performances may therefore 

vary, depending on the complexity of the classification task and the availability of training 

data. 

These various approaches show that the choice of a calibration approach should be evaluated 

for the application at hand. We will therefore present the study of the calibration issue for 

activity recognition in Section 5. 

3.3 Ontology-based Reasoning with Imperfect Information 

Because the components in a pervasive environment deal with the real world, they come with 

certain caveats: sensors in the field could break down, or they could report inaccurately 

because they come up against an unusual phenomenon, i.e. one for which they have not been 

designed. 

Since these issues must be taken into account when dealing with multi-sensor systems, it 

should be possible to describe the concepts of accuracy, uncertainty and provenance with 

respect to sensed data and represent them as part of its ontological description. With these 

descriptions in place, particular reasoning mechanisms on ontologies need to be designed to 

support efficient and precise reasoning on the data.  

Gaia, a representative of the early works, tries to capture and make sense of the impreciseness 

and conflicts inherent when dealing with real-world data [53]. An uncertainty model is 

developed based on a predicate-based representation of contexts and associated confidence 

values. The predicate structure and semantics are specified in ontologies that benefit in: (a) 

checking the predicates‟ validity; (b) simplifying the definition of context predicates in rules; 

(c) facilitating interoperation between different systems; and (d) further reducing the 

possibility of uncertainty when interpreting context information. To reason about uncertainty, 

Gaia employs mechanisms such as probabilistic logic, fuzzy logic, and Bayesian networks, 

each of which is advantageous under different circumstances. For instance, Bayesian 

networks are used for identifying causal dependencies (represented as edges) between 

different events (represented as nodes). The networks are trained with real data, in order to get 

more accurate probability distributions for their event nodes. 

This above approach uses ontologies syntactically as a vocabulary for exchanging knowledge 

base specified in a probabilistic model. Responding to the need for modelling imperfect 

knowledge in the Semantic Web, much research has been devoted to extending formalisms 

and reasoning services, so as to handle uncertain and/or vague information. Representative 

examples include - among others - fuzzy extensions of DLs [64][66], OWL [5][65] and 

SWRL [72], and probabilistic extensions such as PR-OWL [9][14] and BayesOWL [21]; for 

an extensive overview the reader is referred to [67]. Further relevant proposals include a 

pattern-based approach for representing and reasoning with fuzzy knowledge [69], and a 

generic, formalised approach for managing uncertainty [22]. Few works, however, have 

explored the applicability of such initiatives in the domain of pervasive applications; an 

example is the approach presented in [12], where fuzzy reasoning is used to provide 

personalised mobile services based on situation awareness. 

Missing data is another source of uncertainty when reasoning about context: a missed (or 

inaccurate) detection of low-level context information may easily lead to irrecoverable 

failures in the inference of higher-level context abstractions. One possible solution is to model 
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the interpretation of perceptual data as inference to the best explanation using abductive 

reasoning [49][62]. Romero et al. [31][32] investigate this idea in the context of an ontology-

based surveillance application. A set of ontologies is used to capture context at increasing 

levels of abstractions, including tracking knowledge, scene objects and activities. Once the 

low-level context acquired from visual sensors is translated into ABox assertions, abductive 

rules are applied to derive missing facts and trigger the derivation of higher-level context 

descriptions. No information is provided whatsoever about the computational framework used 

to implement the abductive reasoning and the preference criteria used for selecting 

explanations. Acknowledged as a mode of reasoning that is inherent in a plethora of tasks, 

much research has been devoted to understanding abduction. For a detailed account on the 

potential of abductive reasoning in DLs see [24][35]. 

A formal model based on defeasible logic is proposed by Bikakis et al. to support reasoning 

with imperfect context in ambient computing environments [4]. Extending the Multi-Context 

Systems model with non-monotonic features, the proposed framework supports reasoning in 

cases of missing context knowledge. Potential inconsistencies are resolved by means of an 

argumentation framework that exploits context and preference information that expresses 

confidence on the contexts considered. The propositional representation of context knowledge 

may not allow a direct integration with ontology-based context reasoning frameworks; yet 

possibilities for interesting hybrid architectures emerge, where contextual assertions can be 

selectively translated into equivalent grounded formulas. 

In Section 6 we propose a knowledge-driven framework for activity recognition and fusion, 

coupling ontology models of abstract domain activity dependencies with a context-aware 

approach for multi-sensor fusion and monitoring. Our objective is to provide a lightweight 

context-aware framework towards handling the intrinsic characteristics of pervasive 

environments in real-world conditions, such as imperfect information, noise, conflicts or 

inaccurate temporal correlations. We formalise activity dependencies, capitalising upon the 

Situation conceptualisation of the DnS ontology pattern in DUL [28] for defining generic 

context descriptors, whereas activity segmentation and recognition is reduced in linking and 

classifying meaningful contextual segments.  
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4 Uncertainty Modelling for Low-Level Event Detection 

A constraint-based approach following an ontology language allows a straightforward 

modelling of events by domain experts as it uses natural terms. Nevertheless, the deterministic 

nature of its constraints makes the models susceptible to noise from its underlying 

components (e.g., people detection and tracking components in a pipeline of computer vision 

system). Additionally, model-based frameworks are sensitive from any deviation from the 

defined constraints, which may come even from event intra-class variability. 

We present a probabilistic framework to extend the generic constraint-based ontology 

language for event modelling proposed by Vu et al. [70], which has been extensively 

evaluated for event detection on older people monitoring domain [74][34][17]. 

4.1 Constraint-based Approach for Event Detection 

The constraint-based framework is composed of a temporal scenario (event) recognition 

algorithm and an event modelling framework. The event models follow a declarative and 

intuitive ontology-based language that uses natural terminology to allow end users (e.g., 

medical experts) to easily add and change event models of a system. The models are built 

taking into account a priori knowledge of the experimental scene, and attributes of objects 

(herein called Physical Objects, e.g. a person, a car, etc.) detected and tracked by the vision 

components. A priori knowledge consists of the decomposition of a 3D projection of the 

scene floor plan into a set of spatial zones which carry semantic information about the 

monitored scene (e.g., zones like "TV", "armchair", "desk", "coffee machine"). The temporal 

algorithm is responsible for the inference task, where it takes as input low-level data from 

underlying vision components, and evaluates whether these objects (or their properties) 

satisfy the constraints defined in the modelled events. 

An event model is composed of (up to) six components [70]: 

 Physical Objects, refer to real objects involved in the recognition of the event 

modelled. Examples of physical object types are: mobile objects (e.g. person herein, or 

vehicle in another application), contextual objects (equipment) and contextual zones 

(chair zone). 

 Components refer to sub-events of which the model is composed. 

 Forbidden Components refer to events that should not occur when a certain event 

model is recognized. 

 Constraints are conditions that the physical objects and/or the components should 

hold. These constraints could be logical, spatial and temporal. 

 Alert describes the importance of a detection of the scenario model for a given 

specific treatment, and 

 Action in association with the Alert type describes a specific action which would be 

performed when an event of the described model is detected (e.g. send a SMS to a 

caregiver responsible to check a patient over a possible falling down). 

The physical object type depends on the domain in which the event modelling is been applied 

and may be expanded accordingly. Three basic types are defined by default: Person, 

Contextual Zones and Contextual Objects. Person type is an extension of a generic type called 

Mobile, which defines basic information (e.g. 3D position, width, height) that mobile objects 

should have. Examples of “Person” type attributes are body posture and appearance 
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signature(s). Contextual Zone and Object types refer to a priori knowledge on the scene (e.g. 

contextual zone mostly refers to environment furniture). Constraints define conditions that 

physical object properties and/or components must satisfy. They can be non-temporal, such as 

spatial and appearance constraints; or temporal such as the time ordering between two sub-

events (components). For instance, the model                                     

was modelled as                                       . Temporal constraints are 

expressed using Allen‟s interval algebra (e.g., BEFORE, MEET, and AND) [1]. 

The ontology hierarchically categorizes event models according to their complexity as follows 

(in ascending order):  

 Primitive State models an instantaneous value of a property of a physical object 

(person posture, or person inside a semantic zone). 

 Composite State refers to a composition of two or more primitive states. 

 Primitive Event models a change in a value of physical object property (e.g. person 

changes from sitting to standing posture), and 

 Composite Event refers to the composition of two previous event models which 

should hold a temporal relationship (person changes from sitting to standing posture 

before person in corridor zone). 

4.2 Uncertainty Handling 

Uncertainty is present at different levels of the event modelling task, from the uncertainty on 

the low-level data used as input for the task (e.g. values of attributes of people detected in the 

scene) to the event models themselves (e.g. person-to-person differences when performing an 

event, called event intra-class variation). It would be desirable that an event model handles 

small deviations of defined constraints due to both event intra-class variability and low-level 

noise. Finally, uncertainty may also come from a semantic gap between the event model and 

the real event, for instance, on cases where the model is based on a correlated but indirect 

measurement of the targeted real-world event. 

We propose a probabilistic framework to handle uncertainty from low-level data. The 

framework builds conditional probability distributions (CPD) for each constraint of an event 

model using a learning step. The CPD are then used on an inference step to handle small 

deviations of model constraints. Low-level uncertainty is associated to event models, herein 

called Elementary Scenarios, as their constraints are mostly based on low-level data. 

4.2.1 Notation 

We have grouped the event model types of the constraint-based ontology into two categories 

to treat their uncertainty: elementary and composite scenarios. The term scenario is used to 

differentiate the modelling task from the inference task. Elementary Scenario corresponds to 

the type primitive state of the ontology, while Composite Scenario corresponds to all other 

event types. The framework for uncertainty modelling follows the concepts below:  

 Elementary Scenario (ES) is composed of physical objects and constraints. The 

constraints are related to instantaneous values (e.g. current frame) of physical object 

attribute (s). 

 Composite Scenario (CS) is composed of physical objects, sub-scenarios 

(components) and constraints (generally on components). The constraints generally 

refer to temporal relations among sub-scenarios or to a sub-scenario itself. 
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 Constraint is a condition that physical object(s) or sub-scenarios must satisfy. They 

are categorized into two types: non-temporal and temporal. 

 Attributes correspond to the properties (characteristics) of real world objects 

measured by the underlying vision components. 

 Observation corresponds to the amount of evidence regarding a scenario model. 

 Instance or Solution refers to an individual detection of a given scenario. 

4.2.2 Elementary Scenario Uncertainty 

The uncertainty of an Elementary Scenario is formalized as function of its constraints. 

Equation (1) presents its uncertainty using Bayes Rule. 

 

 (   |    
 (  |     (   

 (   
 (1) 

where, 

 (   |    = Conditional Probability of Event     given its observed Constraints   ; 

 (    = Probability of constraints which intervene on    at the current frame; and 

 (    = Prior Probability of Event   . 

The Conditional Probability of Event     given its set of observed Constraints    is obtained 

by the multiplication of the conditional probability of all constraints of    . Consequently, this 

approach assumes that all constraints contribute equally to the event model probability (2). 

 (  |     ∏  (    |   

   

         

 (2) 

where      : Conditional probability of Constraint j of given event i. 

In the case of Elementary Scenarios, most constraints are a function of low-level data with 

respect to the involved physical objects, referring to a specific or a range of values an attribute 

of single physical object assumes, or to a relation amongst the attributes of two or more of 

them (e.g. person position inside a zone). Therefore, we learnt the conditional probabilities of 

the constraints on a training step using the event models and annotated video recordings both 

provided by domain experts. 

The prior probability of Elementary Scenarios is assumed to be 1.0 strengthening their 

dependency on the conditional probabilities at the current time, and also establishing that all 

ES are equally probable.  

In order to avoid computing  (    which can be costly as the number of constraints of a 

scenario increases, we opted to use the unnormalized probability of  (   |   ,  ̃(   |   . 

Equation (3) presents the final form of the equation for probability computation of Elementary 

Scenario. To obtain a probability value in the interval [0, 1] we restrict the framework to 

Conditional probabilities with co-domain range in the interval [0, 1]. 
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Equation (3) addresses both small deviations on attribute values of physical objects 

constraints due to noisy from underlying components, and by consequence, event intra-class 

variations (e.g. caused by person-to-person differences on executing the targeted events). 

Basically, the proposed approach quantifies the confidence on the constraint satisfaction, and 

then propagates it to high-level scenarios. 

4.2.3 Learning Constraint Conditional Probabilities 

The probability of a constraint was addressed by associating it to a Probability Density 

Function (PDF) which quantifies how likely is the constraint to be satisfied given the current 

evidence on the event (e.g. the current value of the attribute Height of the physical object 

involved in the constraint for bending posture detection). The adoption of PDFs provides a 

flexible way to model the uncertainty process that governs the probability distribution of a 

given constraint as it decomposes in a modular fashion the complexity of elementary scenario 

models. Different elementary scenarios may then have different PDFs according to the low-

level data they are conditioned on. The use of PDFs also avoids the need of fully specifying 

all the possible assignments of the conditional probability table of a given scenario model. 

Figure 4-1 presents an example of an elementary scenario, the model                   . 

This scenario is based on the physical objects        and the semantic zone         (e.g. a 

polygon drawn on the ground close/around the table where there were kitchen tools to prepare 

tea). The model has only two constraints: the relational constraint which enforces the involved 

zone to be        ; and a spatial operator called In which verifies whether the person 

position lies inside a given zone. 

ElementaryScenario(Person_in_Zone_Tea, 

  PhysicalObjects( (per:Person), (zT: Zone) ) 

  Constraints(  

   (per->Position In zT->Vertices)  

   (zT->name = "zoneTea") 

  )) 

Figure 4-1. Elementary Scenario Person_in_zone_Tea 

The deterministic version of the operator In is susceptible to different kinds of uncertainty. 

Firstly, malfunction of low-level computer vision components may deviate the estimated 

person position from its actual position. Likewise, the semantic zone         which is a 

priori defined by an expert may not accommodate the complete floor surface where people 

may stand to prepare tea (e.g. by accommodating only the front face of the table and not its 

corners). The above-mentioned cases will certainly invalidate the detection of the event model 

if a deterministic approach is in use. 

To address such cases, we propose and evaluate two alternatives for the deterministic In. The 

goal is to devise an alternative that quantifies how likely is the person position to be inside (or 

how close to) the zone. Briefly, a high probability would be assigned to the constraint when 

the person is inside the zone, and as the distance of the person from the zone increases, the 

given probability is proportional to this distance among objects. 
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The first operator, called fully probabilistic In, defines a PDF with respect to the relative 

distance between the projected centroid of the person onto the floor and the semantic zone 

centre. The PDF converts the observed distance among objects into a uniform Gaussian 

distribution and then applies its result to an exponential function. Briefly, this function 

provides a probability curve with maximum value around the mean distance of the person to 

the zone, with a monotonically decreasing behaviour as the observed values distance from the 

mean. 

 (    )    
 
 
   

                 ̅
 

 

 ( 4 ) 

where  ̅: sample mean and s: standard deviation of  ̅. 

The second operator, hybrid probabilistic In, is a hybrid approach. It provides maximum 

probability (100%) when the person is anywhere inside the defined semantic zone (same as 

the deterministic approach), and the proportional probability is given when the person is 

outside (Equation (4)). Differently from the fully probabilistic In, the distance used to 

computed the proportional probability is the relative distance between the person centroid 

(also projected onto the floor) and the closest edge of the zone polygon (adapted from [56]). 

The Gaussian distribution parameters of each operator are computed by a learning step based 

on deterministic event models using the constraint-based ontology and RGB-D recordings 

fully annotated in terms of events.  

The learning step proceeds as follows: firstly, an event detection process is performed using 

the deterministic event models. For each time the deterministic In is evaluated, the distance 

between person and the semantic zone is kept. Secondly, using the event annotation we 

collect the values frequently assumed by the deterministic In when event annotation is present 

(independent of constraint satisfaction). Thirdly, we compute  ̅ and   parameters for each 

contextual zone.  

By using event models combined with event annotation (both provided by domain experts) in 

the learning step, it allows us to capture not only the true distribution of the low-level 

parameters, but also to prune parameter values according to the event model semantics. 

4.3 Evaluation 

Evaluation was performed using RBG-D recordings of the pilot@lab of Dem@care project. 

Each RBG-D recording corresponded to a patient recording. The number of recordings in 

each evaluation varied from 4 to 49 according to the hypothesis in test. 

4.3.1 Performance Measurement 

The prototype accuracy was evaluated using the indices of recall and precision described in 

Equations (5) and (6), respectively, using as ground-truth events annotated by domain experts. 

       
  

     
 (5) 

          
  

     
 (6) 

where TP: True Positive rate, FP: False Positive rate and FN: False Negative rate. 
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4.3.2 Dataset of RGB-D Recordings 

Participants of 65 years and over were recruited by the Memory Center (MC) of a 

collaborating Hospital. Inclusion criteria of the Alzheimer Disease (AD) group are: diagnosis 

of AD according to NINCDS-ADRDA criteria and a Mini-Mental State Exam (MMSE) [26] 

score above 15. AD participants who have significant motor disturbances (per the Unified 

Parkinson‟s Disease Rating Scale) are excluded. Control participants are healthy in the sense 

of behavioural and cognitive disturbances. The clinical protocol asks the participants to 

undertake a set of physical tasks and Instrumental Activities of Daily Living in a Hospital 

observation room furnished with home appliances [40][36]. Experimental recordings used a 

RGB-D camera (Kinect®, Microsoft©). 

The activities of the clinical protocol are divided into three scenarios: Guided, Semi-guided, 

and Free activities. Guided activities (10 minutes) intend to assess kinematic parameters of 

the participant gait profile (e.g. static and dynamic balance test, walking test):  

 Balance testing: the participant should keep balance while performing actions such as 

keeping both feet side by side stand, standing with the side of the heel of one foot 

touching the big toe of the other foot.  

 Walking Speed test (WS): the assessor asks the participant to walk through the room, 

following a straight path from one side of the room to the other (chair side to video 

camera side, outward attempt, 4 meters), and then to return (return attempt, 4 meters). 

 Repeated Transfer test: the assessor asks the participant to make the first posture 

transfer (from sitting to standing posture) without using help of his/her arms. The 

assessor will then ask the participant to repeat the same action five times in a row, and 

 Time Up and Go test (TUG): participant start from the sitting position, and at the 

assessor's signal he/she needs to stand up, to walk a 3 meters path, to make a U-turn in 

the centre of the room, return and sit down again.  

Semi-guided activities (15 minutes) aim to evaluate the level of autonomy of the participant 

by organizing and carrying out a list of instrumental activities of daily living (IADL) within 

15 minutes. The participant is alone in the room with the list of activities to perform, and 

he/she is advised to leave the room only when he/she has felt the required tasks are 

completed. 

 Watch TV, 

 Make tea/coffee, 

 Write the shopping list of the lunch ingredients, 

 Answer the Phone, 

 Read the newspaper/magazine, 

 Water the plant, 

 Organize the prescribed drugs inside the drug box according to the daily/weekly intake 

schedule, 

 Write a check to pay the electricity bill, 

 Call a taxi, 

 Get out of the room. 

For this work, we have focused on recordings of patients performing the semi-guided 

activities. 
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4.3.3 RGB-D Monitoring System 

This approach has been evaluated using a RGB-D monitoring system which builds on the 

event detection framework proposed by [17]. In the base work a hierarchical model-based 

approach is used to model and detect activities of daily living. The monitoring system is 

composed of three main steps: people detection, people tracking, and event detection. 

For the present evaluation, people detection step is replaced by the depth-based algorithm 

proposed in Nghiem et al.[45], since we have used a RGB-D sensor instead of a 2D-RGB 

camera. The depth-based algorithm performs as follows: first, background subtraction is 

employed on the depth image provided by the RGBD camera to identify moving regions. 

Then, region pixels are clustered in objects based on their depth and neighbourhood 

information. Finally, head and shoulder detectors are employed to detect people amongst 

other types of detected objects.  

The set of detected person in the analysed frame is then passed to the tracking step. This 

module is based on a multi-feature algorithm proposed in Chau et al. [10], and it employs 

features such as 2D size, 3D displacement, colour histogram, and dominant colour to 

discriminate amongst tracked people. 

Event detection step is based on the deterministic event modelling framework (described in 

Section 4.1) and the temporal algorithm proposed by Vu et al. [70] and evaluated for older 

people monitoring in Crispim-Junior et al. [17]. This step analyses whether the set of 3D 

tracked people satisfies the constraints defined into the set of event models in use.   

The next section provides a comparison of the uncertainty modelling framework proposed 

here to the deterministic event modelling approach. Both frameworks were evaluated under 

the same configuration of the underlying components (e.g. people detection and tracking). 

4.4 Results and Discussion 

The proposed approach results are presented for two event detection configurations: firstly, 

primitive state (elementary scenario) detection; and secondly, composite event detection with 

the uncertainty modelling framework as basis for elementary scenario. Although we focus on 

uncertainty modelling for low-level events, we have evaluated the improvement brought for 

the deterministic composite scenario level when using as basis the low-level uncertainty 

modelling. Table 4-1 presents the results on primitive state detection. “Deterministic” stands 

for the standard constraint-based approach; “FP In” for the fully probabilistic version of the 

spatial operator In; and “Hybrid In” to the mixed version between “FP In” and the 

Deterministic”. These results correspond to 10 videos fully annotated in terms of elementary 

scenarios in a 3-fold cross-validation scheme. Results are reported as the average performance 

of the approaches in the three validation sets of 3-fold cross-validation scheme.  

Table 4-1. Average Performance of Primitive State Detection on 3-fold-cross-validation 

 Deterministic Hybrid In FP In 

IADL Rec. Rec. Prec. Prec. Rec. Prec. 

Inside zone Phone 
85.23 ± 

15.00 

90.00 ± 

17.32 

70.90 ± 

11.91 

88.89 ± 

11.11 

67.62 ± 

29.32 

96.29 ± 

6.41 

Inside zone Tea 100 ± 0.00 
100.00 ± 

0.00 

38.81 ± 

27.07 

58.65 ± 

25.63 

100.00 ± 

0.00 

55.63 ± 

29.45 

Inside zone 

Pharmacy 
100 ± 0.00 

100.00  ± 

0.00 

75.55 ± 

21.43 

83.33 ± 

28.86 

100.00 ± 

0.00 

70.45 ± 

32.06 
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Inside zone Plant 100  ± 0.00 
100.00  ± 

0.00 

14.12 ± 

2.10 

61.66 ± 

37.53 

100.00 ± 

0.00 

24.58 ± 

7.84 

Inside zone 

Reading 

86.66 ± 

23.10 

100.00  ± 

0.00 

18.26 ± 

2.43 

45.08 ± 

15.77 

100.00 ± 

0.00 

26.40 ± 

5.11 
Rec.: Recall, Prec.: Precision 

 

The two proposed probabilistic constraints (operators) outperformed the deterministic 

approach in the recall index for person inside zone reading. The Hybrid In outperformed all 

other approaches on the recall index. The remaining events have been detected with equal 

performance rate. The deterministic approach still presents the highest performance in the 

precision index for most of the primitive states, except on Inside Zone phone event. In this 

case, FP In constraint outperformed the other approaches.  

Lower precision values are observed in at least two events for the best performing 

probabilistic approach (FP In). These low precision values are mostly due to the fact that 

event models were not posing any restriction regarding whether a person is static or not, 

walking closely to the zone, or having any filtering step. These restrictions would be part of 

higher-level models built on the primitive states reported. Table 4-2 presents the results on the 

use of uncertainty modelling for elementary scenarios as a basis for a deterministic detection 

of composite events. To accomplish this, we have performed the learning step on 10 videos 

annotated with elementary scenarios (N: 10), and then evaluated the proposed approach 

performance in a second dataset composed of 45 recordings annotated only in terms of 

Composite Events. 

Table 4-2. Extended Evaluation of Framework Performance on Composite Event Detection 

 Deterministic Hybrid In FP In 

IADL Rec. Prec. Rec. Prec. Rec. Prec. 

Using Phone 89.65 86.66 91.86 71.81 88.50 81.05 

Preparing Tea/ Coffee 93.93 65.95 98.46 35.36 98.48 49.24 

Using Pharmacy Basket 95.45 93.33 100.00 86.53 100.00 86.27 

Watering plant 88.88 70.58 100.00 19.58 100.00 20.45 

Average Performance 91.97 79.13  97.58 53.32 96.74 59.25 

N: 45 participants, 15 min. each. 

 

In this extended evaluation (45 participants), the probabilistic constraints have outperformed 

the deterministic approach in the recall index on all cases. The only exception was the FP In 

on the detection of the activity using phone. For this activity, FP In had a slightly smaller 

precision than the deterministic approach, but higher than the one presented at the detection of 

primitive states. 

Concerning precision index, the deterministic approach has still the highest values. From the 

two probabilistic constraints, FP In has shown the highest precision. For instance, Hybrid In 

has improved its precision for the watering plant activity, but this activity remained with the 

worst performance on both probabilistic approaches. This low precision may be explained by 

the short length of this activity in association with its closeness to the activity Preparing Tea. 

Nevertheless, new methods will be investigated to model conditional probabilities of 

constraint whose low-level data may not follow a univariate Gaussian distribution.  
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4.5 Conclusions 

We have presented a framework for uncertainty modelling of low-level events (elementary 

scenarios). The results show that the uncertainty framework has increased the recall index of 

the event detection of elementary scenario by handling uncertainty on constraints based on 

low-level data. 

The benefit of the framework has been further demonstrated in the second evaluation which 

was performed on a larger dataset with the detection of high-level (composite events) instead 

of primitive states. In this second evaluation there was a greater difference in recall index 

values between the probabilistic approaches and the deterministic ones. Despite the 

improvement brought by the probabilistic approach (as FP In), further development is being 

performed to improve the precision. For instance, new methods to model conditional 

probabilities are under investigation to model constraints based on low-level data, for which 

Gaussian-based models are not appropriate. Concerning the overall framework, the 

uncertainty modelling will be also further extended to handle high-level scenarios by 

modelling time constraints among models. 

The proposed uncertainty framework extended the deterministic constraint-based framework 

in use for the modelling of activities of daily living of the CAR component. Currently, a 

supervised learning step is necessary to learn the conditional probabilities associated to the 

event model constraints. This step may be a priori addressed during the installation of the 

system and still remain transparent to the end user that will be in charge of designing the 

event models. But, in order to ease the system deployment, we intend to also investigate 

possible alternatives to assess the confidence on constraint satisfaction without the need of the 

learning step. 
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5 Probabilistic Activity Recognition and Confidence Values 

This contribution focuses on the management of uncertainty when dealing with the output of 

recognition modules such as activity recognition from the wearable camera, taken as input to 

the behaviour interpretation modules. The review of related work was presented in Section 

3.2. This section details a study that evaluates the various calibration approaches for 

classifiers output. The section is organized as follows: 

- In Section 5.1, we present the recognition framework from which the prediction scores are 

obtained and discuss its suitability to score calibration. 

- In Section 5.2, we present in detail the calibration approaches we have considered. 

- In Section 5.3, we present the experimental setup and results associated to the problem of 

calibrating the probabilities 

5.1 Description of the Baseline Recognition Framework 

For this study, we focus on the recognition of Instrumental Activities of Daily Living 

(IADLs) by analysing human-object interactions and also the contextual information 

surrounding them. We will consider the example of the supervised activity pattern recognition 

approach proposed in Section 4 of deliverable D5.3, which merges the information from an 

ensemble of specialized classifiers. Our hierarchical approach has two connected processing 

layers. The first layer contains a set of Active Object (AO) detectors and Visual Place (VP) 

detector. An AO is an object with which the subject/patient wearing the camera interacts. 

Here the interaction is understood as manipulation or observation. A VP is defined as a 

semantic place in which the patient is standing, which can be either a room (kitchen) or a 

more specific place such as “in front of the sink”. The second layer uses the outputs of the 

first layer to perform the activity recognition task. In the following sections, we introduce the 

complete pipeline. 

5.1.1 Active Object Recognition 

In general, we consider one individual detector for each object category although the 

nonlinear classification stage is the only step that is specific for each category. We have built 

our model on the well-known Bag-of-Words (BoW) paradigm [18] and added saliency masks 

as a way to provide spatial discrimination to the original Bag-of-Words approach. Hence, for 

each frame in a video sequence, we extract a set of N SURF descriptors dn [3], using a dense 

grid of circular local patches. Next, each descriptor dn is assigned to the most similar word 

j=1…V in a visual vocabulary by following a vector-quantization process. The visual 

vocabulary, computed using a k-means algorithm over a large set of descriptors in the training 

dataset (about 1M descriptors in our case), has a size of V=4000 visual words.  

In parallel, our system generates a geometric-spatio-temporal saliency map S of the frame 

with the same dimensions of the image and values in the range [0, 1] (the higher the value, the 

more salient a pixel is). Details about the generation of saliency maps can be found in [6]. 

We use this saliency map to weight the influence of each descriptor in the final image 

signature, so that each bin j of the BoW histogram H is computed following the next equation: 
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where the term wnj=1 if the descriptor or region n is quantized to the visual word j in the 

vocabulary, and zero otherwise,  and the weight αn is defined as the maximum saliency value 

S found in the circular local region of the dense grid. Finally, the histogram H is L1-

normalized in order to produce the final image signature. 

Once each image is represented by its weighted histogram of visual words, we use a SVM 

classifier [13] with a nonlinear χ
2
 kernel, which has shown good performance in visual 

recognition tasks working with normalized histograms such as those ones used in the BoW 

paradigm [63].  

Since there are multiple classes, we adopt a 1-vs-all approach where one SVM detector is 

trained for each specific class. Applying this procedure to the test frames produces the raw 

multi-class prediction scores: a vector is associated to each frame, where each coefficient 

corresponds to the score of the frame with respect to a single class detector.  

5.1.2 Visual Place Recognition 

The general framework can be decomposed in three steps. First of all, for each image, a global 

image descriptor is extracted. We choose the Composed Receptive Field Histograms (CRFH) 

[52] since it was proven to produce good performances for indoor localization estimation 

[23]. Then a non-linear dimensionality reduction method is employed.  In our case, we use a 

Kernel Principal Component Analysis (KPCA) [61]. The purpose of this step is twofold: it 

reduces the size of the image descriptor, alleviating the computational burden of the rest of 

the framework, and it provides descriptors on which linear operations can be performed. 

Finally, based on these features, a linear Support Vector Machine (SVM) [13] is applied to 

perform the place recognition, and the result is regularized using temporal accumulation [23].   

In a similar way as for AO detection, a 1-vs-all approach is used to produce the raw multi-

class prediction scores. 

5.1.3 Activity Recognition 

Before injecting the scores of AO and VP into the second layer of the activity recognition the 

scores need to be normalized. This ensures that the scores associated to the various objects 

and various sources (AO and VP) have a comparable scale before merging them.  

We use the Platt approximation [51] to produce posterior probabilistic estimates Ok
t
 and Pj

t
 

for the respective occurrences of the object and places of class k and j in the frame t. 

Our activity recognition module uses the temporal pyramid of features presented in [50], 

which allows exploiting the dynamics of user's behaviour in egocentric videos. However, 

rather than combining features for active/non-active objects, we represent activities as 

sequences of AOs and VPs. For instance, cooking may involve the user's interaction with 

various utensils whereas cleaning the house might require a user to move around various 

places of the house.  

In particular, for each frame t being analysed, we consider a temporal neighbourhood Ωt 

corresponding to the interval [t-Δ/2, t+ Δ/2]. This interval is then iteratively partitioned into 

two sub-segments following a pyramid approach, so that at each level l=0...L-1 the pyramid 

contains 2
l
 sub-segments. Hence, the final feature of a pyramid with L levels is defined as: 
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where   
    represents the feature associated to the sub-segment m in the level l of the pyramid  

and is computed as: 

  
    

  

 
∑   

     
 

 

Where    
  represents the m temporal neighbourhood of the frame t in the level l of the 

pyramid and fs is the feature computed at frame s in the video. In the experimental section, we 

will assess the performance of our approach using the outputs of K object detectors [O1
s
 ... 

OK
s
], the outputs of J place detectors [P1

s
 ... PJ

s
], or the concatenation of both, as features fs. 

In this work, we have used a sliding window method with a fixed window of size Δ and a 

pyramid with L=2. Finally, the temporal feature pyramid has been used as input for a linear 

multiclass SVM in charge of deciding the most likely action for each frame. 

The multiclass SVM is again trained in a 1-vs-all fashion. For the baseline, its scores have not 

been calibrated, as they are used to only detect the best activity, by selecting the activity with 

the highest raw score. Therefore, in order to feed the rest of the WP5 inference system with 

events with probabilistic interpretation of occurrence, the score need to be calibrated.  

5.2 Prediction score calibration 

In the following, we will consider methods from different approaches. The simplest approach 

consists in normalizing the scores to [0, 1] using a sigmoid: 

(s)
g(s) = 

exp1

1


 

Concerning direct calibration approach, we have used the Platt calibration method [51]: 

B)(As
g(s) = 

 exp1

1
 

The real coefficients A and B are estimated by fitting the sigmoid g(s) to modified targets ti:  
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where N  is the number of positive samples and N  the number of negative samples. This is 

done by minimizing: 

))(1log()1())(log(
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A more general calibration function is given by monotonic functions. Their shape is not 

parameterized, as they only satisfy g(s) g(r) s r  . 
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The underlying assumption is that the two-class classifier ranks the samples correctly. Hence 

calibrating the scores consists in finding the monotonic mapping from score space to 

probability space. This can be done using isotonic regression and implemented using the 

efficient Pairwise Adjacent Violators algorithm (PAV) [73]. 

Finally, we also consider a Bayesian generative model on the classifier scores. The raw scores 

are used to train a Gaussian Mixture Model (GMM), under two options. For each individual 

activity class detector, a fitting is done as follows: 

 The positive class is fitted with one Gaussian, the negative samples are fitted with one 

Gaussian. We call this model the Gaussian Model (GM_2_gauss). For a test sample xk, 

the likelihoods p(xk|yk=1) and p(xk|yk=0) are computed using each Gaussian. They are 

combined using Bayes rule and uniform prior to deduce the posterior P(yk=1|xk). 

 The positive class is fitted with one Gaussian, the negative samples are divided into 

their respective activity classes, each of which is fitted with one Gaussian. For the 

dataset considered 19 classes are defined, therefore 19 Gaussians are trained for each 

of the 19 activity detectors. We call this model the Gaussian Mixture Model 

(GMM_19_gauss). For a test sample xk, the likelihood p(xk|yk=1) is computed using 

the corresponding Gaussian, and p(xk|yk=0) is computed as the additive combination 

of the 18 likelihoods with uniform prior. They are combined using Bayes rule and 

uniform prior to deduce the posterior P(yk=1|xk). 

Choosing a different calibration measure for each individual activity detector has an effect on 

both the quality of the final confidence, but also on the relative ranking of the detections when 

dealing with multi-class classification. Therefore, a decision based on first ranked class can be 

influenced by the calibration. 

Hence, in the following section, we will compare these approaches from an experimental 

point of view. We will evaluate both the influence of the calibration on the classification 

performance, as well as the reliability of the probabilistic scores, and decide which calibration 

approach is best suited in the specific context of activities recognition from wearable camera. 

Automatic activity recognition from wearable camera is a difficult problem so it is very 

important to be able to assign confidence measures to the predictions, in order to keep the 

uncertainty under control when feeding the higher level inference. Even though the automatic 

detection of all possible events is not possible in all cases, computing relevant confidences 

can mitigate this by trusting the prediction only when the system is confident. 

5.3 Experimental evaluation 

We have assessed our model in the publicly available IADL dataset, proposed by the authors 

of [50] that contains videos captured by a chest-mounted GoPro camera on 20 users 

performing various daily activities at their homes. This dataset was already annotated for 44 

object-categories and 18 activities of interest recognition and we have additionally labelled 5 

rooms and 7 places of interest.  

This dataset is very challenging since both the environment and the object instances are 

completely different for each user, thus leading to an unconstrained scenario we have in 

Dem@care project: @Home scenario at DCU in particular. It is therefore well adapted to the 

objective of evaluating the quality of the transformation of scores to probabilities in a realistic 

dataset. This is important, as score calibration methods have been usually presented in 
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academic contexts, and our objective here is to evaluate their suitability in the much more 

complex setup of activity recognition. 

For the experiments, the first 6 users have been used for the cross-validation of the classifier 

parameters and the estimation of calibration parameters, whereas the remaining users (7-20) 

have been used to train and test the models following a leave-1-out approach. 

The raw performances of the OA and VP modules have already been presented in D5.3. In 

summary: 

 Active Object recognition has a 11% Mean Average Precision (AP) with performance 

varying a lot from one class to the other (ranging from 1% to 54%) 

 Visual Place recognition has a 68.4% accuracy, using 7 place classes (in front of the 

bathroom sink, in front of the washing machine, in front of the kitchen sink, in front of 

the television, in front of the stove, in front of the fridge and outside) 

In this section we show our results in IADL recognition in egocentric videos. Our system 

identifies the activity at every frame of the video using a sliding window that allows us to 

compute an average Frame level classification accuracy. For that end, we have also included a 

new class “no activity/reject” associated to frames that are not showing any activity of 

interest. It is also worth noting that the global performance is computed by averaging the 

particular accuracies for each class (rather than simply counting the number of correct 

decisions) and, thus adapts better to highly unbalanced sets as the one being used (where most 

of the time there is no activity of interest). 

The window-size Δ has been fixed from previous experiments at 1200 frames (40 seconds of 

video). The fusion of AO and VP was also shown to provide the best results in terms of 

accuracy and outperform previous works [50] on this dataset. They are fused using a mixing 

coefficient, α=0.65, computed by cross-validation, as shown in Figure 5-1. 

 

Figure 5-1. Choice of alpha parameter for fusing object and place recognition outputs. 

The overall performance on the various approaches considered is presented in Figure 5-2, 

using classical ROC curve and Precision-Recall (PR) curve. The associated quantitative 

metrics are compared in Figure 5-3: Area under the ROC curve (AUC) and Mean Average 

Precision (MAP), which corresponds to the area under the PR-curve. Those results are 

computed by averaging the individual results for each class. 
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Under both metrics, the Normalized (ad-hoc sigmoid), PAV and Platt methods perform better 

than the GM and GMM methods. According to the AUC metric, the best methods are PAV, 

Normalized, Platt, respectively. According to MAP, the ranking is Normalized, Platt, PAV, 

respectively. 

  

Figure 5-2. Global performance of activity recognition: ROC curve (left) and precision-recall 

curve (right) 

  

Figure 5-3. Average performance of activity recognition: AUC and AP (average on all 

classes) 

Next, we present the reliability plot of the methods. The graph in Figure 5-4 represents, for 

each interval of calibrated score (on x-axis), the probability of correct estimation (on y-axis) 

for all events having a calibrated score in this interval. The interval [0, 1] is divided into 10 

subintervals of the form [0.1 k, 0.1 (k+1)]. For all events whose calibrated score belongs to 

one subinterval, the empirical frequency of correct estimation is computed. When an interval 

of calibrated score contains very few events, its frequency of correct estimate is not shown. 

An ideal curve should be on the diagonal, which means that even though all samples cannot 

be classified correctly, the calibrated score reflects the actual probability that the estimate is 

correct. 

On this plot we notice that apart from the Normalized method, which has a globally fixed 

score mapping, all other approaches tend to be overconfident on the [0.5, 1] interval. This 

may be related to a case of over fitting to the training data. In Figure 5-5, the number of 

occurrences for each class of activity is shown. Many classes have less than 300 events in the 
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dataset, which is then divided in training and testing. To examine this analysis in detail, we 

will focus on the 4 most frequently occurring classes. 

 

Figure 5-4. Reliability plot (average on all classes) 

 

 

Figure 5-5. Occurrence of classes within the training/testing dataset 

 

In Figure 5-6, the AUC and MAP metrics are shown for the 4 most frequent classes in the 

dataset. Similar ranking of the methods can be observed as the global analysis. We can 
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nevertheless observe that the class “watching TV” has consistently lower performances than 

the other classes “laundry”, “washing dishes” and “using computer”. In terms of MAP, the 

Normalized approach performs best, followed by Platt, then PAV. It is interesting to note that 

this corresponds to the ordering of the approaches in terms of number of parameters to 

estimate: more complex models yield lower performance. 

   

Figure 5-6. AUC and AP for 4 most frequent classes 

This analysis is complemented by the reliability plot in Figure 5-7. The poor performance on 

the “watching TV” shows that this specific class is difficult to recognize in this dataset. On 

the other hand, on the three other classes, the Normalized approach is over-estimating much 

the confidence of almost all incorrect predictions. Platt and GMM model seems to have more 

balanced estimation of confidence, which is closer to a linear curve. Nevertheless, their 

estimate is almost always over-confident. Finally, the PAV approach is systematically over-

confident, which could be associated to over-fitting, due to its very flexible non-parametric 

model. 

Overall this dataset, which is representative of real life activity recognition from wearable 

camera, is prone to some over-fitting by most models. Therefore simpler models should be 

preferred. Obtaining a large amount of annotated data seems also an important point to be 

able to capture the true variability of each class, thus reducing the over-confidence observed 

here with more complex models. 
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Figure 5-7. Reliability plots for each of the most frequent classes. From left to right: (top-row) 

laundry, washing dishes, (bottom-row) watching TV, using computer. 

5.4 Conclusion 

In this chapter, we have evaluated various strategies for probabilistic classifier score 

calibration in the context of activity recognition. This is a very difficult problem, as noted by 

the performances of some activities. Nevertheless, some activities show good performance. 

We have selected 4 classes for detailed study based on the amount of available training data, 

three of which achieve over 50% AP performance. It turns out that quite good performances 

are achieved using an ad-hoc normalization, although probabilities are over-estimated in the 

low probability intervals and underestimated in the higher probability intervals. The reliability 

diagram shows the best overall reliability for the Platt calibration, both in the low and high 

probability intervals. Less constrained approaches such as PAV and GMMs yield overall 

overconfident estimates, which could be interpreted as over-fitting to the training data. For the 

activity recognition application, we can therefore conclude that given the limited data 

available for training (as it is also the case in @Home scenario) simpler calibration models 

should be preferred. 
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6 Context-based Fusion in Multi-Sensor Environments 

Due to the intrinsic characteristics of pervasive environments in real-world conditions, such 

as imperfect information, noise, conflicts or inaccurate temporal correlations, the use of strict 

contextual constraints to fuse information from multiple sources is not always a practical and 

flexible solution. Consider, for example, the rule in Figure 2-2 that fuses four inputs: the 

             activity that is detected by CAR and three tea-related objects (kettle, tea box 

and tea bag) detected in WP4 from the wearable camera. In this case, if the video analysis in 

WP4 fails to detect the tea bag during tea preparation, then the rule would not trigger, and 

thus, the system will fail to derive the            activity. Moreover, many activities are 

carried out differently even by the same person, e.g. the kettle during the make tea activity 

may be turned on before or after taking out a cup from the cupboard. Thus, the use of strictly 

structured background knowledge relevant to the presence and order of activities or their 

temporal boundaries is not always able to effectively capture and reason about the context. 

In an effort to overcome the above limitations, the second version of the multi-parametric 

interpretation framework introduces a more flexible high-level fusion approach that detects 

complex situations based on loosely coupled domain activity dependencies rather than on 

strict contextual constraints. More specifically, given an RDF dataset of observations from 

WP4 and WP5 components, we define a procedure for assigning context connections, i.e. 

links among relevant groups of observations that signify the presence of complex activities. 

The connections are determined by semantically comparing local contexts, i.e. the type and 

number of neighbour observations, against context descriptors, i.e. background knowledge 

about domain activity dependencies. We formalise these descriptors by capitalising on the 

Situation concept of the DnS (Descriptions and Situations) pattern [29] of the DOLCE+DnS 

Ultralite (DUL) ontology [28], exploiting the OWL 2 meta-modelling capabilities for defining 

generic relations among classes. 

It should be noted that the context-based fusion approach presented in this deliverable only 

substitutes the strict complex activity SPARQL rules described in D5.2 (Section 4.2.3, page 

38), such as the SPARQL rule in Figure 2-2.  

6.1 Domain Context Descriptors 

In order to describe the context pertinent to each complex activity in an abstract yet formal 

way, we reuse the           concept of the DnS pattern of DUL. The aim is to provide the 

conceptual model for annotating domain activity classes with lower-level observation types. 

Figure 6-1 (a) shows the specialisation of the           class, along with two sub-properties 

of the              upper-level property. 
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Our aim is to define relations among domain activity classes, therefore, the proposed ontology 

treats classes as instances, allowing property assertions to be made among domain concepts. 

Intuitively, the ontology can be thought of as a conceptual (meta) layer that can be placed on 

top of any domain activity ontology. This way, instances of the                   are used 

to link domain activities (          property) with one or more lower-level 

conceptualisations through dependency property assertions. Figure 6-1 (b) presents an 

example of annotating class         with class types relevant to objects (e.g.    ) and 

location (e.g.        ). 

The model also allows annotated classes to inherit the context dependencies of the 

superclasses through the following property chain axiom: 

                                                              

We use the term “context descriptor” to refer to the set of classes, denoted as   , that a 

domain activity C has been annotated with. For example, the context descriptor of         

is denoted as          and is equal to the set                                 
       . 

6.2 Context Connections and Activity Recognition 

Given a set                with RDF instances representing low-level observations, e.g. 

objects, locations, postures, etc., and a set of domain context descriptors 

        
    

      
 , we describe in this section the steps involved in identifying 

meaningful contexts in   for recognizing higher level activities. The confidence value of an 

observation is denoted as  (   .  

6.2.1 Local Contexts 

The first step is to define the local contexts of each observation      that capture 

information relevant to the neighbour observations of    and the most plausible domain 

 

Figure 6-1. (a) The ContextDescriptor class, (b) Example annotation of the MakeTea 

activity 
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activities that    can be part of, based on the context descriptors      the local context 

similarity  . 

Definition 1. A local context    of an observation      is defined as the tuple       
    , 

where   
                   (     )      and   is the high-level class of the most 

plausible classification of   , such that         (    
       (    

     , where    

            
              

       (  )    (    . 

More specifically,   
  is the set of observation instances    in the neighbourhood of    that 

either overlap with    (       or are the r-nearest to    ( (     )     , based on their 

temporal ordering. Class   denotes the most plausible domain activity classification of   , 
derived by computing the   similarity between the set with the most specific observation 

classes     
  and the domain context descriptors     .  (    denotes the most specific class 

for instance    and we use multisets (duplicates are allowed), since the number of 

observations with similar class types in the neighbourhood of    is important. Moreover, the 

class types   in     
  are associated with the confidence values   of the corresponding 

observations. 

The   measure captures the similarity between the multiset   
  of a local context against the 

context descriptor set    of a class  . It is defined as  

 (  
       

∑    
     

( (            
  

|  
 |

 

where   
  is the multiset with neighbour observation class types and    is the context 

descriptor of  .   is computed as the mean value of the sum of the maximum   similarities 

for each concept     
 , since each   may have more than one relevant concepts in   . 

Intuitively,   captures the local plausibility of an observation    to be part of a complex 

activity  . If    , then all the classes in   
  appear in    and, therefore, it is very likely that 

the corresponding local context is part of the complex activity  . 

The   measure uses the   function that computes the similarity of a neighbour observation 

class     
  against a context descriptor class      as 

 (     

{
 

 
                                               

| (    (  |

| (  |
                       

                                   

 

where  (   is the set of the superclasses of  , excluding the           concept, such that 

 (               . Intuitively, an observation class   in the neighbourhood of    

exactly matches a class   in the context descriptor set   , if it is equivalent to or a subclass 

of  . In this case,   is subsumed by   and, thus, fully satisfies the contextual dependency 

imposed by    that there should be at least one observation of type  . On the other hand, if   

is subsumed by   (    , then   is a more general concept than the one required by the 

context descriptor and the similarity is computed based on the rate of the superclasses of   

that are also superclasses of  .  For example, if       is a direct subclass of   (      
        ,         and           , then  (                , since       is 

subsumed by        . If           and         , then  (                  , 

depending on their superclasses.  
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Algorithm 1 describes the procedure for creating set   with the most plausible local contexts 

for each     . The algorithm begins by defining set   
  with the neighbour observations of 

   (line 3). Then, the partial context set    is created as the multiset of the most specific class 

types of the observations in   
  (line 4), together with the corresponding confidence values  . 

The algorithm then computes the   similarity    of    against each context descriptor    
, 

creating the set    with tuples of the form         (lines 5 to 7). If the class type of    does 

not semantically belong to class descriptor    
, then the corresponding similarity tuple is 

omitted (line 7), ignoring noisy observations. Finally, a tuple       
      is created for all 

        with the maximum similarity in    and inserted into  . Note that    may contain more 

than one         tuples with the maximum similarity, and, therefore, more than one local 

contexts can be generated for   . 

6.2.2 Context Connections 

Based on the local contexts obtained in the previous section, the next step is to define context 

connections, that is, links among relevant local contexts that will be used to create the final 

segments for activity recognition. 

Definition 2. Two local contexts          
      and          

       are linked with a 

context connection, denoted as   
  
→   , if      

  and      . 

Intuitively, a context connection captures the contextual dependency between two neighbour 

observations    and    with respect to a common high-level classification activity    (   

    . Note that symmetry and transitivity do not hold. For example, the fact that an 

observation    belongs to the neighbours of    does not impose that    also belongs to the 

neighbours of   . 

Algorithm 2 describes the process for creating the set of context connections     . Two local 

contexts          
       and          

       are retrieved from  , such that    belongs to 

the neighbourhood of    (     
   and        (lines 2 and 3), and the context connection 

  
  
→    is added to      (line 4). 
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6.2.3 Activity Situations and Recognition  

The last step is to create activity situations, i.e. subsets of the initial set of observations  , and 

to compute the similarity   to the context descriptor   . 

Definition 3. An activity situation   is defined as the tuple          , where       is the 

set of the observations that belong to the activity situation and   denotes the similarity of   to 

the context descriptor   , such that    (        , where      and           
             (       (    . 

The   measure captures the similarity between the domain context descriptor of class  , 

namely   , and set      with the most specific classes of the observations in a situation. 

 (          
∑    

        
 (           

|  |
 

Similarly to  ,   denotes the similarity of two sets of concepts. However,   aims to capture 

the local (partial) similarity of neighbourhood class types (  
   against the context 

descriptor   . In contrast,   captures the similarity of the context descriptor    against the set 

of situation observation class types (     , in order to derive the final plausibility for the 

corresponding situation. If      , then all the classes in    appear in     , meaning that the 

situation can be considered identical to the context descriptor   , and, therefore, to class  . 

An activity situation is derived by simply traversing the path defined by context 
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connections   
  
→   

  
→   

  
→   , collecting the observations    of the local contexts    found in 

the path. The collected observations constitute set     of a situation             . 

Algorithm 3 describes the procedure. It begins by selecting a context connection   
  
→   , 

which has not been visited yet (line 2), as the root of the current path, adding it to the        

set (line 4). In each iteration, a context connection   
  
→    is selected from the        set 

and: (a) the observations of the pertinent local contexts are added to     (line 7), (b) the 

current context connection is added to the         set (line 8), and (c) the context connections 

  
  
→    are retrieved from      and added to the        set, such that        (lines 9, 10). 

An empty        set denotes that there are no other context connections in the current path. 

In this case, the context descriptor of    (   
  is compared against the set      with the 

most specific types of observations in     to compute the   similarity of   (line 11). 

6.2.4 Example 

In order to better illustrate the basic notions that underpin our approach, we present an 

example regarding the detection of the            and          activities. The context 

descriptors (see Section 6.1) that are used for the two activities are: 

                                                          

                      

                                                      

More specifically, the            complex activity involves the fusion of: 

               activities detected in WP5 from RGB-D streams (static camera -  ). 

        ,                and         objects detected in WP4 based on object 

recognition from wearable camera ( ). 

          observations derived in WP4 regarding the location of the person based on 

place recognition from wearable camera. 

             activities detected in WP5 by fusing objects and locations (Section 5). 

Similarly, the          activity involves the fusion of: 

        ,        objects detected in WP4 based on object recognition from 

wearable camera. 

            observations derived in WP4 regarding the location of the person based 

on place recognition from wearable camera. 

          observations derived in WP5 from RGB-D streams. 

        activities detected in WP4 based on activity recognition from static camera. 

The aim of the context-based fusion is to effectively integrate the complementary information 

detected by the various components of the system, in order to identify contexts that signify the 

presence of complex situations and to derive the most plausible classification to the domain 

activity classes. In our example, for instance, the goal is to combine             activities 

that are derived by fusing objects and locations from wearable camera, with               

activities that are detected from RGB-D video streams, as well as, with contextual 

information regarding objects and locations in order to take a final decision about the 

occurrence of the            activity. 
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Following the above description, the context descriptors of the            and          

activities are defined in our example as:                                      

                                              and                    
                                  . In the following, we use the observations 

depicted in Figure 6-2 relevant to making and drinking tea and we describe the procedure for 

identifying and classifying the corresponding complex activities. For simplicity, we assume in 

this example that the confidence values of all the observations is 1. 

Local Contexts (Algorithm 1). We describe the definition of the local context for the 

         observation (  ) in Figure 6-2, using    . Observations          and     

overlap with   , whereas     and    are the 1-nearest to   . Thus, 

  
                          (line 3) and 

                                                        (line 4). Our example 

involves two context descriptors and therefore                          . The class type 

for    is        that exists in both context descriptors, therefore   will be computed for both 

of them. We have that  (              )   
             

 
       and  (              

 
             

 
     . Thus, we have a single local context for    with maximum 

plausibility, denoted as          
           . Similarly, we have the following local 

contexts for the other observations:  

         
                            

                  

          
                              

                  

          
                            

                   

          
                            

                

                    
                   

             
                  

 

Context Connections (Algorithm 2). 36 context connections are created among the local 

contexts of our example. For instance,    belongs to the neighbourhood of the local 

contexts         , and    . As described, the classification class of       and     is     (   , 

whereas the classification class of    is            (   . Therefore,    will form context 

connections only with       and    , i.e.   
  
→      

  
→      

  
→    . The other context 

connections that are generated are: 

 

Figure 6-2. Example observations for preparing and drinking tea 
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→      

  
→      

  
→        

  
→      

  
→      

  
→       

  
→      

  
→     

  
  
→      

  
→       

  
→       

  
→      

  
→       

  
→      

  
→      

  
→    

  
  
→      

  
→       

  
→      

  
→      

  
→       

  
→      

  
→       

  
→    

  
  
→       

  
→      

  
→      

  
→       

  
→       

  
→      

  
→      

  
→    

  
  
→      

  
→      

  
→       

  
→    

    

 

Activity Situations (Algorithm 3). By applying Algorithm 3 over the 36 context 

connections, two activity situations are generated:                            and    
                   , where                            and 

                        (Figure 6-3 (a)). Despite the overlapping and noisy nature of the 

observations in the example (e.g. the location-related observations    and    overlap), the 

algorithm is able to discriminate the two situations of preparing and drinking a tea by 

connecting also the relevant observations. The observation        is considered as noise and 

it is ignored. It is worth noting that the            activity is recognised (with lower 

plausibility) even if the situation    partially matches the corresponding context descriptor. 

For example, there are no observations of type             and        in     .  

The nearest observations threshold   in the running example was set to 1, meaning that, apart 

from overlapping observations, the 1-nearest observations were also taken into account to 

define neighbourhood relations. If we instead use    , then we get the result of Figure 6-3 

(b). In this case,    (       ) is not connected with observations relevant to the 

           activity, and is considered as noise, breaking also the connection of    and    

with the            activity that are classified instead in the          activity. Intuitively, 

  allows control of the amount of contextual information to be taken into account during the 

definition of the neighbourhood sets and local contexts of observations. Currently,   is 

defined manually based on domain knowledge regarding the quality and temporal 

characteristics of the data used and, in principle, datasets with highly overlapping and 

incoherent observations need small   values. 

 

Figure 6-3. Fusion results according to the r value 
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6.2.5 Evaluation 

Given the limited availability of datasets with observations from the various Dem@Care 

components, we have evaluated the context-based fusion approach on synthetic data. Figure 

6-4 depicts the visualisation by the Clinician Interface of results obtained by Dem@Care 

components (v1) during a Lab session. As illustrated, the generated observations are highly 

overlapped, noisy and incomplete, with inaccurate temporal correlations. For example, the 

patient is detected at the medication and phone areas at the same time. 

In order to evaluate our approach with synthetic data that capture the aforementioned intrinsic 

properties and characteristics of Dem@Care data, we developed a synthetic data generator 

tool that can be used to generate observations for IADLs. Each IADL is described in terms of 

its relevant primitive observations regarding objects, locations, postures and actions. For each 

observation, the probability of occurrence in each relevant IADL is also specified, in order to 

simulate missing information and the fact that an activity can be performed in a variety of 

ways. Moreover, there is a fixed probability of each observation to appear in non-relevant 

IADLs, generating in that way noise. Figure 6-5 presents observations that have been 

generated for the activity               .  

 

Figure 6-5. Example visualisation of objects, locations and activities detected at Lab 

 

Figure 6-4. Sample synthetic data generated by the Dem@Care observation generator 
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We generated 50 datasets using the context descriptors of the 8 activities depicted in Table 

6-1. Each dataset contains all nine activities and their order, while the number and type of the 

respective observations have been randomly defined. Moreover, the observations of an 

activity have been defined to start at most 5 seconds before or after the last observation of the 

previous activity. In that way, we incorporate temporal inaccuracies among high-level 

activities allowing observations from different activities to overlap.  

Table 6-2 summarises the performance on the synthetic datasets, where True Positives (TP) is 

the number of IADLs correctly recognised, False Positives (FP) is the number of IADLs 

incorrectly recognised as performed and False Negatives (FN) is the number of IADLs that 

have not been recognised. The recall (Rec) and precision (Pre) are defined in Section 4.3.1. 

We used    , since the synthetic datasets contain highly overlapping observations, and we 

set a minimum threshold on   (      ), so as to ignore activities with low plausibility. As 

described, the optimal   value depends on the data quality and temporal characteristics and, in 

principle, datasets with highly overlapping and incoherent observations need small   values. 

Our approach achieves the best accuracy for activities “Prepare hot tea”, “Make a phone call”, 

“Watch TV”, “Water the plant”, “WashHands” and “WriteCheck”, whose context descriptors 

encapsulate richer domain contextual information, compared to “Prepare drug box” and 

“ReadBook”. On the other hand, the recall of these activities is relatively low, since they are 

Table 6-1. Contexts descriptors of high-level activities 

IADL Context Descriptors 

PrepareDrugBox Pillbox, Basket, MedicationPlace 

PrepareHotTea Kettle, TeaArea, TeaBag, Cup, Sugar, TeaBox 

MakePhoneCall Phone, PhoneZone, PickUpPhone, Talk 

WatchTV Remote, TV, TVZone, Sitting 

WaterPlant WateringCan, PlantZone, Bending, Plant 

WriteCheck Sitting, Pen, Check, TableZone, Table 

WashHands Soap, SinkZone, Tap, Hands 

ReadBook Sitting, ChairZone, Book 

 

Table 6-2. Recall and precision results of context-aware fusion 

 
TP FP FN Rec Pre 

PrepareDrugBox 45 10 5 90.00 81.82 

PrepareHotTea 38 3 12 76.00 92.68 

MakePhoneCall 36 4 14 72.00 90.00 

WatchTV 41 3 9 82.00 93.18 

WaterPlant 41 3 9 82.00 93.18 

WriteCheck 40 4 10 80.00 90.91 

WashHands 42 4 8 84.00 91.30 

ReadBook 45 8 5 90.00 84.91 
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more susceptible to false negatives, requiring richer contextual dependencies to be present.   

Our framework achieves an average precision close to 90%, demonstrating the feasibility of 

our approach. However, there are still certain limitations, which we consider as very 

important research directions for future work. First, our approach cannot handle interleaved 

activities, nor can it resolve conflicts after the recognition process. We are investigating the 

use of defeasible reasoning on top of the framework for further enhancing the activity 

recognition capabilities. Second, our next step is to provide context-aware real-time assistance 

to Alzheimer's patients. To this end, we are currently investigating adaptations of our 

algorithms to allow the dynamic and incremental generation of local contexts and context 

connections for real-time fusion, using a CEP engine (see Section 7.2). 

6.3 Summary 

We presented a knowledge-driven framework towards activity recognition, coupling ontology 

models of abstract domain activity dependencies with a context-aware approach for fusing 

observations coming from multiple sources. We formalise activity dependencies capitalising 

upon the           conceptualisation of the DnS ontology pattern in DUL, whereas fusion is 

reduced in linking and classifying meaningful contextual segments. We elaborated on the 

obtained results from the evaluation of our approach in a synthetic dataset. The use of generic 

context descriptors in representing activity models achieves very promising results, leading to 

handling the intrinsically noisy and imperfect information in multi-sensory environments, 

beyond strict activity patterns and background knowledge. 

The key directions that underpin our ongoing research involve: (a) introducing an additional 

layer for detecting interleaved activities and resolving conflicts, (b) adapting our algorithms 

for supporting real-time context-aware monitoring, and, (c) patient profiling through the 

extraction and learning of behavioural patterns from the detected activity situations. In 

addition, we are investigating extensions to the           model for capturing richer 

contextual dependencies, such as compositions of context descriptors. 
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7 Functional Extensions  

This section presents service-related contributions that extend the first version of the multi-

parametric interpretation framework presented in D5.2. 

7.1 Support of Questionnaires 

Questionnaires are an important tool for obtaining user-reported data about problems in the 

daily life, for example, mood and sleeping problems. However, the information provided by 

the patients is subjective and in many cases incomplete, without reflecting their actual state, 

progress and functioning in daily life. The standard doctor‟s questionnaire-based assessment 

of the person with dementia in Dem@Care can be greatly reinforced by the multi-sensor 

processing results, behavioural profiling and interpretation, so as to deliver through WP6 the 

appropriate clinical feedback and at-home treatment recommendations (WP2), closing the 

clinician‟s loop. 

The second version of the multi-parametric behaviour interpretation framework provides the 

necessary knowledge structures and analysis procedures for storing and calculating the scores 

of the questionnaires that are used in Dem@Care, as these have been reported in the 

respective deliverables (Functional Requirements & Scenarios v1 [33] and v2 [41]). In the 

following subsections, we briefly describe: (a) the updates performed on the representation 

layer of SI to adequately capture questionnaire-related data, and (b) the SPARQL-based 

implementation of the scoring algorithms. 

7.1.1 Questionnaire Ontology 

The basic class relationships of the questionnaire-related ontology are depicted in Figure 7-1. 

Seven subclasses of the               class have been defined for the representation of the 

seven questionnaire types that are currently supported by the ontology. Each Questionnaire 

can be associated with one or more           through the             property; each 

         has an    and it can be associated with an        through the           

 

Figure 7-1. Questionnaire ontology 
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property. Moreover, each               is linked to a         (           property), it 

has a date (        property) and it has a score that is computed by the SI module, as we 

describe in the following section. Towards standardisation, the questionnaire ontology has 

been aligned with the conceptual schema of the DOLCE+DnS Ultralite (DUL) ontology [28].  

7.1.2 Calculating Scores 

In order to compute the scores of the questionnaires, we have used SPARQL rules in terms of 

SPARQL CONSTRUCT query graph patterns to implement the interpretation logic of each 

questionnaire type, reusing the SPARQL rule execution framework of SI for activity 

interpretation (see D5.2). For example, the steps needed to calculate the sleep latency score 

(PSQILATEN value) based on the answers of the second (Question2) and fifth 

(Question5a) queries of the Pittsburgh Sleep Quality Index (PSQI) questionnaire are the 

following (for the complete list of steps refer to deliverable D8.2 Evaluation Protocols [36]): 

Question 2: During the past month, how long (in minutes) has it usually taken you to fall 

asleep each night? 

Step1: 

IF Question2 > 0 and < 15, THEN set value of Question2_new to 0 

IF Question2 > 15 and < 30, THEN set value of Question2_new to 1 

IF Question2 > 30 and < 60, THEN set value of Question2_new to 2 

IF Question2 > 60, THEN set value of Question2_new to 3 

 

Question 5: During the past month, how often have you had trouble sleeping because you … 

a) Cannot get to sleep within 30 minutes (select one of the following) 

Not during the past month__, Less than once a week__, Once or twice a week__, Three or 

more times a week__ 

Step2 

IF Question5a + Question2_new = 0, THEN set PSQILATEN to 0 

IF Question5a + Question2_new > 1 and < 2, THEN set PSQILATEN to 1 

IF Question5a + Question2_new > 3 and < 4, THEN set PSQILATEN to 2 

IF Question5a + Question2_new > 5 and < 6, THEN set PSQILATEN to 3 

The following SPARQL query implements the first IF statement of Step1, setting the 

Question2_new property equal to 0, when the answer is between 0 and 15 minutes. 

CONSTRUCT { 
 ?qs :Question2_new 0; 
} 
WHERE { 

?qs a :Questionnaire; 
  :hasQuestion [:id “2”; :hasAnswer [:answerValue ?Question2]]. 
 FILTER (?Question2 >= 0 && && ?Question2 <= 15) . 
} 
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Similar SPARQL rules have been defined for the rest of the IF statements of Step1. Regarding 

Step2, the following SPARQL rule implements the first IF statement, adding the 

Question2_new property value to the answer value (0, 1, 2 or 3) of the fifth question. 

CONSTRUCT { 
 ?qs :PSQILATEN ?sum; 
} 
WHERE { 

?qs :Question2_new ?v; 
  :hasQuestion [:id “5a”; :hasAnswer [:answerValue ?Question5a]]. 
 BIND(?v + ?Question5a as ?sum) . 
 FILTER(?sum = 0) . 
} 

 

Similar SPARQL rules have been defined for the rest of the IF statements of Step2. The final 

score of the PSQI questionnaire is derived by the aggregation of the scoring values for other 

sleep-related attributes, such as subjective sleep quality, sleep duration, sleep efficiency, sleep 

disturbances, daytime dysfunctions and use of sleep medications. The scores are stored in the 

Knowledge Base (KB) and can be retrieved by WP6 in order to deliver the appropriate 

feedback and at-home treatment recommendations, taking also into account other multi-

sensor processing results, for example, additional sleep-related problems that might have been 

detected by WP5 (e.g. nocturia incidents). 

7.2 Complex Event Processing 

In the second version of the multi-parametric behaviour interpretation framework, WP5 has 

been enhanced with Complex Event Processing (CEP) capabilities. The objective is to take 

advantage of the native temporal reasoning capabilities of CEP to provide contextualised real-

time support of patients, caregivers and clinicians via coupling profile and clinical knowledge 

with results made available by the other components of the system.   

In the current version of the Dem@Care system, however, only CAR is able to deliver real-

time analysis results, delineating the possible realm of WP5 real-time interpretation. For 

example, the location, object and activity recognition modules in WP4 (ORWC, RRWC, 

WCPU, HAR) analyse video data in an offline mode. Similarly, the processing of the DTI-2 

data for extracting moving intensity measurements, as well as, the processing of audio data 

(OSA module) for extracting speech-related measurements, such as verbal reaction time, 

verbal participation, voice rating during conversation, are offline procedures. As a result, 

there is limited availability of online data in WP5 for real-time fusion.  

Following the above discussion, we present in this section preliminary investigations on 

providing basic real-time services within WP5 regarding the detection of potentially critical 

situations of patients, coupling activities detected by CAR with patient profile knowledge. 

More elaborate real-time interpretation tasks will be tackled as the Dem@Care system will be 

gradually enriched with real-time sensors and analysis components. 

7.2.1 Modelling Profile Knowledge 

Profile knowledge is represented using the ontology patterns described in D5.3 for modelling 

basic behaviour aspects of patients, such as typical night sleep duration, the amount of times 

the patient visits the bathroom during the night, the daily frequency of medicine intake, the 

frequency of meals per day, etc. Figure 7-2 presents instantiations of the duration and 
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frequency patterns to model patient profile knowledge regarding the duration of night sleep 

and the number of bathroom visits during the night.  

The instantiated patterns are stored in the KB of WP5, allowing SPARQL queries to be 

executed for retrieving profile information about the patient. For example, the following 

SPARQL query retrieves from the KB the typical frequency of a patient‟s night bathroom 

visits.  

SELECT ?frequency 

WHERE { 

    ?p a :ActivityFrequency; 

  :hasDescription  

   [:definesActivityType  

              [:classifiesActivity :NightBathroomVisit;  

         :period "daily";  

         :value ?frequency] 

         ].  
} 

It should be noted that the profile information is currently defined manually as part of the 

initialisation of the system with patient background knowledge. Next steps include the 

development of algorithms for their automated population and enrichment, i.e. the learning 

and evolution of pattern descriptions. First results will be reported in the upcoming 

deliverable D5.5 Contextualised Knowledge Enrichment. 

7.2.2 CEP Patterns 

The purpose of the CEP patterns is to detect (near) real-time deviations of patients from 

normal behaviours that indicate problems or possibly problematic situations, triggering the 

respective feedback/alert services in WP6. To this end, the CEP engine of Drools (Drools 

 

Figure 7-2. Example pattern instantiations for representing profile knowledge. 
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Fusion
1
) is used within WP5 to correlate activities detected by CAR with patient-pertinent 

profile knowledge by means of ontology patterns.  

Figure 7-3 presents the interactions of the WP5 components in v2. The CAR component 

sends the detected activities directly to the CEP module for real-time fusion with profile 

knowledge. The CEP engine queries the KB to retrieve behaviour patterns and the events that 

are detected are sent to the alert and feedback services of WP6. Note that the activities sent by 

CAR are also stored in the KB for further offline processing and fusion with other 

observations by SI.  

  

Figure 7-3. Logical component architecture within WP5 

Drools provides a declarative, rule-based language for the definition of CEP patterns. Figure 

7-4 presents the CEP rule that is used to detect situations where patients go to the bathroom at 

night more often than usual. This rule actually fuses the two profile patterns in Figure 7-2. 

More specifically, the rule queries the KB to retrieve profile information regarding the 

frequency of the night bathroom visits as well as the typical duration of night sleep. The 

duration is used to define the window size that is used to count the number of the already 

detected night bathroom visits. If this number is greater than the typical frequency, then an 

alert is generated that is sent to WP6 for further processing. 

                                                 
1
 http://drools.jboss.org/drools-fusion.html 

rule: "NightBathroomVisitAlert" 

when 

 NightBathroomVisit() 

Frequency($f : Value) from KB.GetNightBathroomVisitFrequency() 

Duration($d : Value) from KB.GetNightSleepDuration() 

 Number(intValue > $f) from accumulate ( 

        $nb: NightBathroomVisit() over window:time($d), 

        count( $nb )) 

then 

 //send alert to WP6 (feedback & alert manager) 

Figure 7-4. Example CEP rule 
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8 Conclusions 

This deliverable presented the second version of the multi-parametric behaviour interpretation 

framework, focusing on the extensions that have been implemented for supporting reasoning 

under uncertainty and handling incomplete and noisy input. 

We have presented a framework for modelling uncertainty of low-level events (elementary 

scenarios). The results show that the framework has increased the recall index of the detection 

of elementary scenarios whose constraints are based on low-level data. Further development 

is being performed to improve the approach precision and extending it to all hierarchy levels 

of event modelling. The uncertainty framework intends to extend the deterministic constraint-

based framework used in CAR. 

We have also studied the prediction of calibrated probability scores for activity recognition 

using the wearable camera. The fusion of active object recognition and location features is 

used as input to classify the activities. It was demonstrated that, given the complexity of the 

task and the available training data, models with fewer parameters such as the Platt model 

should be used to avoid over-fitting. The reliability of these probabilities is indeed important 

for ensuring the quality of the interpretation when fusing multi-parametric data.  

In order to handle the intrinsic characteristics in pervasive environments, such as imperfect 

information, noise, conflicts or inaccurate temporal correlations, we defined a practical 

ontology-based framework for fusing observations from multiple heterogeneous sources. The 

framework detects complex activities based on loosely coupled domain activity dependencies 

rather than on strict contextual constraints in the form of rules.  

In addition, further functional extensions to v1 have been described regarding the support of 

questionnaires and the incorporation of a CEP engine for providing (initially basic) real-time 

services within WP5 regarding the detection of potentially critical situations of patients, 

coupling activities detected by CAR with profile knowledge.  

Future work will focus on the learning of semantic spatial zones on an unsupervised manner 

and the use of activity probabilities with temporal and auxiliary information to detect salient 

temporal events characterizing the behaviour of the person. We are also investigating methods 

for extracting behaviour patterns and detecting behaviour changes from activity situations that 

are generated based on the abstract context descriptors presented in this deliverable towards 

patient profiling. Regarding the representation of these patterns, our objective is to take full 

advantage of the DnS pattern, associating each situation to one or more behavioural 

description instantiations pertinent to patients' idiosyncratic and habitual information. First 

results will be reported in the upcoming deliverable D5.5 Contextualised Knowledge 

Enrichment. 
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 Appendix A

 Illustration of activity classes for experiments in Chapter 4 A.1.

Combing hair, make up, brushing teeth, dental floss, washing hands/face, drying hands/face,  

laundry, washing dishes, making tea, making coffee, drinking water/bottle, drinking 

water/tap, making cold food/snack, vacuuming, watching tv, using computer, using cell, 

reading book. 

 


